Называется абсолютной погрешностью измерения. Измерение физических величин

Инструкция

В первую очередь, проведите несколько измерений прибором одной и той же величины, чтобы иметь возможность действительное значение. Чем больше будет проведено измерений, тем точнее будет результат. Например, взвесьте на электронных весах. Допустим, вы получили результаты 0,106, 0,111, 0,098 кг.

Теперь посчитайте действительное значение величины (действительное, поскольку истинное найти невозможно). Для этого сложите полученные результаты и разделите их на количество измерений, то есть найдите среднее арифметическое. В примере действительное значение будет равно (0,106+0,111+0,098)/3=0,105.

Источники:

  • как найти погрешность измерений

Неотъемлемой частью любого измерения является некоторая погрешность . Она представляет собой качественную характеристику точности проведенного исследования. По форме представления она может быть абсолютной и относительной.

Вам понадобится

  • - калькулятор.

Инструкция

Вторые возникают от влияния причин, и случайный характер. К ним можно отнести неправильное округление при подсчете показаний и влияние . Если такие ошибки значительно меньше, чем деления шкалы этого прибора измерения, то в качестве абсолютной погрешности целесообразно взять половину деления.

Промах или грубая погрешность представляет собой результат наблюдения, который резко отличается от всех остальных.

Абсолютная погрешность приближенного числового значения – это разность между результатом, в ходе измерения и истинным значением измеряемой величины. Истинное или действительное значение отражает исследуемую физическую величину. Эта погрешность является самой простой количественной мерой ошибки. Её можно рассчитать по следующей формуле: ∆Х = Хисл - Хист. Она может принимать положительное и отрицательное значение. Для большего понимания рассмотрим . В школе 1205 учащихся, при округлении до 1200 абсолютная погрешность равняется: ∆ = 1200 - 1205 = 5.

Существуют определенные расчета погрешности величин. Во-первых, абсолютная погрешность суммы двух независимых величин равна сумме их абсолютных погрешностей: ∆(Х+Y) = ∆Х+∆Y. Аналогичный подход применим для разности двух погрешностей. Можно воспользоваться формулой: ∆(Х-Y) = ∆Х+∆Y.

Источники:

  • как определить абсолютную погрешность

Измерения физических величин всегда сопровождаются той или иной погрешностью . Она представляет собой отклонение результатов измерения от истинного значения измеряемой величины.

Вам понадобится

  • -измерительный прибор:
  • -калькулятор.

Инструкция

Погрешности могут возникнуть в результате влияния различных факторов. Среди них можно выделить несовершенство средств или методов измерения, неточности при их изготовлении, несоблюдение специальных условий при проведении исследования.

Существует несколько классификаций . По форме представления они могут быть абсолютными, относительными и приведенными. Первые представляют собой разность между исчисленным и действительным значением величины. Выражаются в единицах измеряемого явления и находятся по формуле:∆х = хисл- хист. Вторые определяются отношением абсолютных погрешностей к величине истинного значения показателя.Формула расчета имеет вид:δ = ∆х/хист. Измеряется в процентах или долях.

Приведенная погрешность измерительного прибора находится как отношение ∆х к нормирующему значению хн. В зависимости типа прибора оно принимается либо равным пределу измерений, либо отнесено к их определенному диапазону.

По условиям возникновения различают основные и дополнительные. Если измерения проводились в нормальных условиях, то возникает первый вид. Отклонения, обусловленные выходом значений за пределы нормальных, является дополнительной. Для ее оценки в документации обычно устанавливают нормы, в пределах которых может изменяться величина при нарушении условий проведения измерений.

Также погрешности физических измерений подразделяются на систематические, случайные и грубые. Первые вызываются факторами, которые действуют при многократном повторении измерений. Вторые возникают от влияния причин, и характер. Промах представляет собой результат наблюдения, который резко отличается от всех остальных.

В зависимости от характера измеряемой величины могут использоваться различные способы измерения погрешности. Первый из них это метод Корнфельда. Он основан на исчислении доверительного интервала в пределах от минимального до максимального результата. Погрешность в этом случае будет представлять собой половину разности этих результатов: ∆х = (хmax-xmin)/2. Еще один из способов – это расчет средней квадратической погрешности.

Измерения могут проводиться с разной степенью точности. При этом абсолютно точными не бывают даже прецизионные приборы. Абсолютная и относительная погрешности могут быть малы, но в реальности они есть практически всегда. Разница между приближенным и точным значениями некой величины называется абсолютной погрешностью . При этом отклонение может быть как в большую, так и в меньшую сторону.

Вам понадобится

  • - данные измерений;
  • - калькулятор.

Инструкция

Перед тем как рассчитывать абсолютную погрешность, примите за исходные данные несколько постулатов. Исключите грубые погрешности. Примите, что необходимые поправки уже вычислены и внесены в результат. Такой поправкой может быть, перенос исходной точки измерений.

Примите в качестве исходного положения то, что и учтены случайные погрешности. При этом подразумевается, что они меньше систематических, то есть абсолютной и относительной, характерных именно для этого прибора.

Случайные погрешности влияют на результат даже высокоточных измерений. Поэтому любой результат будет более или менее приближенным к абсолютному, но всегда будут расхождения. Определите этот интервал. Его можно выразить формулой (Xизм- ΔХ)≤Хизм ≤ (Хизм+ΔХ).

Определите величину, максимально приближенную к значению. В измерениях берется арифметическое, которое можно по формуле, на рисунке. Примите результат за истинную величину. Во многих случаях в качестве точного принимается показание эталонного прибора.

Зная истинную величину , вы можете найти абсолютную погрешность, необходимо учитывать при всех последующих измерениях. Найдите величину Х1 – данные конкретного измерения. Определите разность ΔХ, отняв от большего меньшее. При определении погрешности учитывается только модуль этой разности.

Обратите внимание

Как правило, на практике абсолютно точное измерение провести не удается. Поэтому за эталонную величину принимается предельная погрешность. Она представляет собой максимальное значение модуля абсолютной погрешности.

Полезный совет

В практических измерениях за величину абсолютной погрешности обычно принимается половина наименьшей цены деления. При действиях с числами за абсолютную погрешность принимается половина значения цифры, которая находится в следующим за точными цифрами разряде.

Для определения класса точности прибора более важным бывает отношение абсолютной погрешности к результату измерений или к длине шкалы.

Погрешности измерений связаны с несовершенством приборов, инструментов, методики. Точность зависит также от внимательности и состояния экспериментатора. Погрешности разделяются на абсолютные, относительные и приведенные.

Инструкция

Пусть однократное измерение величины дало результат x. Истинное значение обозначено за x0. Тогда абсолютная погрешность Δx=|x-x0|. Она оценивает абсолютную . Абсолютная погрешность складывается из трех составляющих: случайных погрешностей, систематических погрешностей и промахов. Обычно при измерении прибором берут в качестве погрешности половину цены деления. Для миллиметровой линейки это будет 0,5 мм.

Истинное значение измеряемой величины в промежутке (x-Δx ; x+Δx). Короче это записывается как x0=x±Δx. Важно измерять x и Δx в одних и тех же единицах измерения и записывать в одном и том же формате , например, целая часть и три запятой. Итак, абсолютная погрешность дает границы интервала, в котором с некоторой вероятностью находится истинное значение.

Измерения прямые и косвенные. В прямых измерениях сразу замеряется искомая величина соответствующим прибором. Например, тела линейкой, напряжение – вольтметром. При косвенных измерениях величина находится по формуле зависимости между ней и замеряемыми величинами.

Если результат представляет собой зависимость от трех непосредственно измеряемых величин, имеющих погрешности Δx1, Δx2, Δx3, то погрешность косвенного измерения ΔF=√[(Δx1 ∂F/∂x1)²+(Δx2 ∂F/∂x2)²+(Δx3 ∂F/∂x3)²]. Здесь ∂F/∂x(i) – частные производные от функции по каждой из непосредственно измеряемых величин.

Полезный совет

Промахи – это грубые неточности измерений, возникающие при неисправности приборов, невнимательности экспериментатора, нарушении методики эксперимента. Чтобы уменьшить вероятность таких промахов, при проведении измерений будьте внимательны и подробно расписывайте полученный результат.

Источники:

  • Методические указания к лабораторным работам по физике
  • как найти относительную ошибку

Результат любого измерения неизбежно сопровождается отклонением от истинного значения. Вычислить погрешность измерения можно несколькими способами в зависимости от ее типа, например, статистическими методами определения доверительного интервала, среднеквадратического отклонения и пр.

На практике обычно числа, над которыми производятся вычисления, являются приближенными значениями тех или иных величин. Для краткости речи приближенное значение величины называют приближенным числом. Истинное значение величины называют точным числом. Приближенное число имеет практическую ценность лишь тогда, когда мы можем определить, с какой степенью точности оно дано, т.е. оценить его погрешность. Напомним основные понятия из общего курса математики.

Обозначим: x - точное число (истинное значение величины), а -приближенное число (приближенное значение величины).

Определение 1 . Погрешностью (или истинной погрешностью) приближенного числа называется разность между числом x и его приближенным значением а . Погрешность приближенного числа а будем обозначать . Итак,

Точное число x чаще всего бывает неизвестно, поэтому найти истинную и абсолютную погрешности не представляет возможным. С другой стороны, бывает необходимо оценить абсолютную погрешность, т.е. указать число, которого не может превысить абсолютная погрешность. Например, измеряя длину предмета данным инструментом, мы должны быть уверены в том, что погрешность полученного числового значения не превысит некоторого числа, например 0,1 мм. Другими словами, мы должны знать границу абсолютной погрешности. Эту границу будем называть предельной абсолютной погрешностью.

Определение 3 . Предельной абсолютной погрешностью приближенного числа а называется положительное число такое, что , т.е.

Значит, х по недостатку, - по избытку. Применяют также такую запись:

. (2.5)

Ясно, что предельная абсолютная погрешность определяется неоднозначно: если некоторое число есть предельная абсолютная погрешность, то любое большее число тоже есть предельная абсолютная погрешность. На практике стараются выбирать возможно меньшее и простое по записи (с 1-2 значащими цифрами) число , удовлетворяющее неравенству (2.3).



Пример. Определить истинную, абсолютную и предельную абсолютную погрешности числа а = 0,17, взятого в качестве приближенного значения числа .

Истинная погрешность:

Абсолютная погрешность:

За предельную абсолютную погрешность можно принять число и любое большее число. В десятичной записи будем иметь: Заменяя это число большим и возможно более простым по записи, примем:

Замечание . Если а есть приближенное значение числа х , причем предельная абсолютная погрешность равна h , то говорят, что а есть приближенное значение числа х с точностью до h.

Знания абсолютной погрешности недостаточно для характеристики качества измерения или вычисления. Пусть, например, получены такие результаты при измерении длины. Расстояние между двумя городами S 1 =500 1 км и расстояние между двумя зданиями в городе S 2 =10 1 км. Хотя абсолютные погрешности обоих результатов одинаковы, однако существенное значение имеет то, что в первом случае абсолютная погрешность в 1 км приходится на 500 км, во втором - на 10 км. Качество измерения в первом случае лучше, чем во втором. Качество результата измерения или вычисления характеризуется относительной погрешностью.

Определение 4. Относительной погрешностью приближенного значения а числа х называется отношение абсолютной погрешности числа а к абсолютному значению числа х :

Определение 5. Предельной относительной погрешностью приближенного числа а называется положительное число такое, что .

Так как , то из формулы (2.7) следует, что можно вычислить по формуле

. (2.8)

Для краткости речи в тех случаях, когда это не вызывает недоразумений, вместо “предельная относительная погрешность” говорят просто “относительная погрешность”.

Предельную относительную погрешность часто выражают в процентах.

Пример 1 . . Полагая , можем принять = . Производя деление и округляя (обязательно в сторону увеличения), получим =0,0008=0,08%.

Пример 2. При взвешивании тела получен результат: p=23,4 0,2 г. Имеем =0,2. . Производя деление и округляя, получим =0,9%.

Формула (2.8) определяет зависимость между абсолютной и относительной погрешностями. Из формулы (2.8) следует:

. (2.9)

Пользуясь формулами (2.8) и (2.9), мы можем, если известно число а , по данной абсолютной погрешности находить относительную погрешность и наоборот.

Заметим, что формулы (2.8) и (2.9) часто приходится применять и тогда, когда мы еще не знаем приближенного числа а с требуемой точностью, а знаем грубое приближенное значение а . Например, требуется измерить длину предмета с относительной погрешностью не выше 0,1%. Спрашивается: возможно ли измерить длину с нужной точностью при помощи штангенциркуля, позволяющего измерить длину с абсолютной погрешностью до 0,1 мм? Пусть мы еще не измеряли предмет точным инструментом, но знаем, что грубое приближенное значение длины - около 12 см. По формуле (1.9) находим абсолютную погрешность:

Отсюда видно, что при помощи штангенциркуля возможно выполнить измерение с требуемой точностью.

В процессе вычислительной работы часто приходится переходить от абсолютной погрешности к относительной, и наоборот, что делается с помощью формул (1.8) и (1.9).

Абсолютная и относительная погрешности

С приближенными числами нам приходится иметь дело при вычислениях значений каких-либо функций, либо при измерениях и обработке физических величин, получаемых в результате экспериментов. В том и другом случае нужно уметь правильно записывать значения приближенных чисел и их погрешность.

Приближенным числом а называется число, которое незначительно отличается от точного числа А и заменяет последнее в вычислениях . Если известно, что а < А , то а называется приближенным значением числа А по недостатку; если а > А , – то по избытку. Если а есть приближенное значение числа А , то пишут а ≈ А .

Под ошибкой или погрешностью А приближенного числа а обычно понимается разность между соответствующим точным числом А и данным приближенным, т.е.

Чтобы получить точное число А , нужно к приближенному значению числа прибавить его ошибку , т.е.

Во многих случаях знак ошибки неизвестен. Тогда целесообразно пользоваться абсолютной погрешностью приближенного числа

Из приведенной записи следует, что абсолютной погрешностью приближенного числа а называется модуль разности между соответствующими точным числом А и его приближенным значением а , т.е.

Точное число А чаще всего бывает неизвестно, поэтому найти ошибку или абсолютную погрешность не представляется возможным. В этом случае полезно вместо неизвестной теоретической погрешности ввести ее оценку сверху, так называемую предельную абсолютную погрешность.

Под предельной абсолютной погрешностью приближенного числа а понимается всякое число , не меньшее абсолютной погрешности этого числа, т.е.

Если в последней записи вместо использовать формулу (1,1), то можно записать

(1.2)

Отсюда следует, что точное число А заключено в границах

Следовательно, разность есть приближение числа А по недостатку, а – приближение числа А по избытку. В этом случае для краткости пользуются записью

Ясно, что предельная абсолютная погрешность определяется неоднозначно: если некоторое число есть предельная абсолютная погрешность, то любое большее, чем положительное число, тоже есть предельная абсолютная погрешность. На практике стараются выбирать возможно меньшее и простое по записи число ,удовлетворяющее неравенству (1.2).

Например, если в результате измерения получили длину отрезка l = 210 см ± 0,5 см., то здесь предельная абсолютная погрешность = 0,5 см, а точная величина l отрезка заключена в границах 209,5см≤l≤ 210,5см.

Абсолютная погрешность недостаточна для характеристики точности измерения или вычисления. Так, например, если при измерении длин двух стержней получены результаты l 1 = 95,6см ± 0,1см и l 2 =8,3 ± 0,1 см, то, несмотря на совпадение предельных абсолютных погрешностей, точность первого измерения выше, чем второго. Отсюда видно, что для точности измерений важнее не абсолютная, а относительная погрешность, которая зависит от значений измеряемых величин.

Относительной погрешностью δ приближенного числа а называется отношение абсолютной погрешности этого числа к модулю соответствующего точного числа А, т.е.

Аналогично предельной абсолютной погрешности используют также определение и для предельной относительной погрешности. Предельной относительной погрешностью данного приближенного числа а называется всякое число, не меньшее относительной погрешности этого числа

т.е. откуда следует

Таким образом, за предельную абсолютную погрешность числа а можно принять

Так как на практике А≈а ,то вместо формулы (1.3) часто пользуются формулой

1.2 Десятичная запись приближенных чисел

Всякое положительное десятичное число а может быть представлено в виде конечной или бесконечной дроби

где – десятичные цифры числа а ( = 0,1,2,...,9), причем старшая цифра а m – число разрядов в записи целой части числа а , а n – число разрядов в записи дробной части числа а . Например:

5214,73... = 5 · 10 3 + 2 · 10 2 + 1 · 10 1 + 4 · 10 0 +7 · 10 -1 + 3 · 10 -2 ... (1.5)

Каждая цифра , стоящая на определенном месте в числе а , написанном в виде (1.4), имеет свой вес. Так, цифра, стоящая на первом месте (т.е. ), весит 10 m , на втором – 10 m -1 и т.д.

На практике мы обычно не пользуемся записью в форме (1.4), а используем сокращенную запись чисел в виде последовательности коэффициентов при соответствующих степенях 10. Так, например, в записи (1.5) мы пользуемся левой от знака равенства формой, а не правой, представляющей разложение этого числа по степеням 10.

На практике преимущественно приходится иметь дело с приближенными числами в виде конечных десятичных дробей. Для корректного сравнения различных вычислительных и экспериментальных результатов вводят понятие значащей цифры в записи результата. Все сохраняемые десятичные значения (i = m , m- 1,…, m-n+ 1), отличные от нуля, и нуль, если он стоит между значащими цифрами или является представителем сохраненного десятичного разряда в конце числа называются значащими цифрами приближенного числа а . При этом нули, связанные с множителем 10 n к значащим не относятся.

При позиционном обозначении числа а в десятичной системе счисления иногда приходится вводить лишние нули в начале или в конце числа. Например,

а = 7·10 -3 + 0·10 -4 + 1·10 -5 + 0·10 -6 = 0,00 7010

b = 2·10 9 + 0·10 8 + 0·10 7 + 3·10 6 + 0·10 5 = 2003000000.

Такие нули (в приведенных примерах они подчеркнуты) не считаются значащими цифрами.

Значащей цифрой приближенного числа называется всякая цифра в его десятичном изображении, отличная от нуля , а также и нуль, если он содержится между значащими цифрами или является представителем сохраненного десятичного разряда. Все остальные нули, входящие в состав приближенного числа и служащие лишь для обозначения его десятичных разрядов, не причисляются к значащим числам.

Например, в числе 0,002080 первые три нуля не являются значащими цифрами, так как они служат только для установления десятичных разрядов других цифр. Остальные два нуля являются значащими цифрами, так как первый из них находиться между значащими цифрами 2 и 8, а второй указывает на то, что в приближенном числе сохранен десятичный разряд 10 -6 . В случае, если в данном числе 0,002080 последняя цифра не является значащей, то это число должно быть записано в виде 0,00208. С этой точки зрения числа 0,002080 и 0,00208 не равноценны, так как первое из них содержит четыре значащих цифры, а второе лишь три.



Кроме понятия значащей цифры важным является понятие верной цифры. Следует отметить, что это понятие существует в двух определениях – в узком и широком смыслах .

Определение (в широком смысле). Говорят, что n первых значащих цифр числа (считая слева направо) являются верными в широком смысле, если абсолютная погрешность этого числа не превосходит единицы (веса) n -горазряда. (Пояснение: 1 10 1 – здесь вес 1 равен 10; 1 10 0 – здесь вес 1 равен 1; 1 10 -1 – здесь вес 1 равен 0,1; 1 10 -2 – здесь вес 1 равен 0,01 и т.д.).

Определение (в узком смысле). Говорят, что n первых значащих цифр приближенного числа являются верными, если абсолютная погрешность этого числа не превосходит половины единицы (веса) n -горазряда. (Пояснение: 1 10 1 – здесь вес половины 1 равен 5; 1 10 0 – здесь вес половины 1 равен 0,5; 1 10 -1 – равен 0,05 и т.д.).

Например, в приближенном числе исходя из первого определения, значащие цифры 3,4 и 5 верные в широком смысле, а цифра 6 – сомнительна. Исходя из второго определения, значащие цифры 3 и 4 являются верными в узком смысле, а цифры 5 и 6 – сомнительные. Важно подчеркнуть, что точность приближенного числа зависит не от количества значащих цифр, а от количества верных значащих цифр .

Как в теоретических рассуждениях, так и в практических применениях большее применение находит определение верной цифры в узком смысле.

Таким образом, если для приближенного числа а, заменяющего число А , известно, что

(1.6)

то, по определению, первые n цифр этого числа являются верными.

Например, для точного числа А = 35,97 число а = 36,00 является приближенным с тремя верными знаками. К этому результату приводят следующие рассуждения. Так как абсолютная погрешность нашего приближенного числа составляет величину 0,03, то по определению она должна удовлетворять условию

(1.7)

В нашем приближенном числе 36,00 цифра 3 является первой значащей цифрой (т.е. ), поэтому m = 1. Отсюда очевидно, что условие (1.7) будет выполняться при n = 3.

Обычно принято при десятичной записи приближенного числа писать только верные цифры. Если известно, что данное приближенное число записано правильно, то по записи можно определить предельную абсолютную погрешность. Именно при правильной записи абсолютная погрешность не превышает половины младшего разряда, который следует за последним верным разрядом (или половины единицы последнего верного разряда, что одно и то же)

Например, даны приближенные числа, записанные правильно: а = 3,8; b = 0,0283; с = 4260. Согласно определению, предельные абсолютные погрешности этих чисел будут: = 0,05; = 0,00005; = 0,5.

Абсолютная и относительная погрешность

Элементы теории погрешностей

Точные и приближенные числа

Точность числа, как правило, не вызывает сомнений, когда речь идет о целых значениях данных(2 карандаша, 100 деревьев). Однако, в большинстве случаев, когда точное значение числа указать невозможно (например, при измерении предмета линейкой, снятии результатов с прибора и т.п.), мы имеем дело с приближенными данными.

Приближенным значениемназывается число, незначительно отличающееся от точного значения и заменяющее его в вычислениях. Степень отличия приближенного значения числа от его точного значения характеризуется погрешностью .

Различают следующие основные источники погрешностей:

1. Погрешности постановки задачи , возникающие в результате приближенного описания реального явления в терминах математики.

2. Погрешности метода , связанные с трудностью или невозможностью решения поставленной задачи и заменой ее подобной, такой, чтобы можно было применить известный и доступный метод решения и получить результат, близкий к искомому.

3. Неустранимые погрешности , связанные с приближенными значениями исходных данных и обусловленные выполнением вычислений над приближенными числами.

4. Погрешности округления , связанные с округлением значений исходных данных, промежуточных и конечных результатов, получаемых с применением вычислительных средств.


Абсолютная и относительная погрешность

Учет погрешностей является важным аспектом применения численных методов, поскольку погрешность конечного результата решения всей задачи является продуктом взаимодействия всех видов погрешностей. Поэтому одной из основных задач теории погрешностей является оценка точности результата на основании точности исходных данных.

Если – точное число и – его приближенное значение, то погрешностью (ошибкой) приближенного значения является степень близости его значения к его точному значению .

Простейшей количественной мерой погрешности является абсолютная погрешность, которая определяется как

(1.1.2-1)

Как видно из формулы 1.1.2-1, абсолютная погрешность имеет те же единицы измерения, что и величина . Поэтому по величине абсолютной погрешности далеко не всегда можно сделать правильное заключение о качестве приближения. Например, если , а речь идет о детали станка, то измерения являются очень грубыми, а если о размере судна, то – очень точными. В связи с этим введено понятие относительной погрешности, в котором значение абсолютной погрешности отнесено к модулю приближенного значения ().

(1.1.2-2)

Использование относительных погрешностей удобно, в частности, тем, что они не зависят от масштабов величин и единиц измерений данных. Относительная погрешность измеряется в долях или процентах. Так, например, если

, то , а если и ,

то тогда .

Чтобы численно оценить погрешность функции, требуется знать основные правила подсчета погрешности действий:

· при сложении и вычитании чисел абсолютные погрешности чисел складываются

· при умножении и делении чисел друг на друга складываются их относительные погрешности


· при возведении в степень приближенного числа его относительная погрешность умножается на показатель степени

Пример 1.1.2-1. Дана функция: . Найти абсолютную и относительную погрешности величины (погрешность результата выполнения арифметических операций), если значения известны, а 1 – точное число и его погрешность равна нулю.

Определив, таким образом, значение относительной погрешности, можно найти значение абсолютной погрешности, как , где величина вычисляется по формуле при приближенных значениях

Поскольку точное значение величины обычно неизвестно, то вычисление и по приведенным выше формулам невозможно. Поэтому на практике проводят оценку предельных погрешностей вида:

(1.1.2-3)

где и – известные величины, которые являются верхними границами абсолютной и относительной погрешностей, иначе их называют – предельная абсолютная и предельная относительная погрешности. Таким образом, точное значение лежит в пределах:

Если величина известна, то , а если известна величина , то

Абсолютная и относительная погрешность числа.

В качестве характеристик точности приближенных величин любого происхождения вводятся понятия абсолютной и относительной погрешности этих величин.

Обозначим через а приближение к точному числу А.

Определени . Величина называется погрешностью приближенного числаа.

Определение . Абсолютной погрешностью приближенного числа а называется величина
.

Практически точное число А обычно неизвестно, но мы всегда можем указать границы, в которых изменяется абсолютная погрешность.

Определение . Предельной абсолютной погрешностью приближенного числа а называется наименьшая из верхних границ для величины , которую можно найти при данном способе получения числаа.

На практике в качестве выбирают одну из верхних границ для , достаточно близкую к наименьшей.

Поскольку
, то
. Иногда пишут:
.

Абсолютная погрешность - это разница между результатом измерения

и истинным (действительным) значением измеряемой величины.

Абсолютная погрешность и предельная абсолютная погрешность не достаточны для характеристики точности измерения или вычисления. Качественно более существенна величина относительной погрешности.

Определение . Относительной погрешностью приближенного числа а назовем величину:

Определение . Предельной относительной погрешностью приближенного числа а назовем величину

Так как
.

Таким образом, относительная погрешность определяет фактически величину абсолютной погрешности, приходящейся на единицу измеряемого или вычисляемого приближенного числа а.

Пример. Округляя точные числа А до трех значащих цифр, определить

абсолютную Dи относительную δ погрешности полученных приближенных

Дано:

Найти:

∆-абсолютная погрешность

δ –относительная погрешность

Решение:

=|-13.327-(-13.3)|=0.027

,a0

*100%=0.203%

Ответ: =0,027; δ=0.203%

2.Десятичная запись приближенного числа. Значащая цифра. Верные знаки числа(определение верных и значащих цифр, примеры; теория о связи относительной погрешности и числа верных знаков).

Верные знаки числа.

Определение . Значащей цифрой приближенного числа а называется всякая цифра, отличная от нуля, и нуль, если он расположен между значащими цифрами или является представителем сохраненного десятичного разряда.

Например, в числе 0,00507 =
имеем 3 значащие цифры, а в числе 0,005070=
значащие цифры, т.е. нуль справа, сохраняя десятичный разряд, является значащим.

Условимся впредь нули справа записывать, если только они являются значащими. Тогда, иначе говоря,

значащими являются все цифры числа а, кроме нулей слева.

В десятичной системе счисления всякое число а может быть представлено в виде конечной или бесконечной суммы (десятичной дроби):

где
,
- первая значащая цифра, m - целое число, называемое старшим десятичным разрядом числа а.

Например, 518,3 =, m=2.

Пользуясь записью , введем понятие о верных десятичных знаках (в значащих цифрах) приближенно-

го числа.

Определение . Говорят, что в приближенном числе а формы n - первых значащих цифр ,

где i= m, m-1,..., m-n+1 являются верными, если абсолютная погрешность этого числа не превышает половины единицы разряда, выражаемого n-й значащей цифрой:

В противном случае последняя цифра
называется сомнительной.

При записи приближенного числа без указания его погрешности требуют, чтобы все записанные цифры

были верными. Это требование соблюдено во всех математических таблицах.

Термин “n верных знаков” характеризует лишь степень точности приближенного числа и его не следует понимать так, что n первых значащих цифр приближенного числа а совпадает с соответствующими цифрами точного числа А. Например, у чисел А=10, а=9,997 все значащие цифры различны, но число а имеет 3 верных значащих цифры. Действительно, здесь m=0 и n=3 (находим подбором).



Пособия и алименты