Нейтрон (элементарная частица). Строение атома: ядро, нейтрон, протон, электрон

НЕЙТРОН (n) (от лат. neuter - ни тот, ни другой) - элементарная частица с нулевым электрич. зарядом и массой, незначительно большей массы протона. Наряду с протоном под общим назв. нуклон входит в состав атомных ядер. H. имеет спин 1 / 2 и, следовательно, подчиняется Ферми - Дирака статистике (является фермионом). Принадлежит к семейству адра-нов; обладает барионным числом B= 1, т. е. входит в группу барионов .

Открыт в 1932 Дж. Чедвиком (J. Chadwick), показавшим, что жёсткое проникающее излучение, возникающее при бомбардировке ядер бериллия a-частицами, состоит из электрически нейтральных частиц с массой, примерно равной протонной. В 1932 Д. Д. Иваненко и В. Гей-зенберг (W. Heisenberg) выдвинули гипотезу о том, что атомные ядра состоят из протонов и H. В отличие от заряж. частиц, H. легко проникает в ядра при любой энергии и с большой вероятностью вызывает ядерные реакции захвата (n,g), (n,a), (n, p), если баланс энергии в реакции положительный. Вероятность экзотермич. увеличивается при замедлении H. обратно пропорц. его скорости. Увеличение вероятности реакций захвата H. при их замедлении в водородсодержащих средах было обнаружено Э. Ферми (E. Fermi) с сотрудниками в 1934. Способность H. вызывать деление тяжёлых ядер, открытая О. Ганом (О. Hahn) и Ф. Штрасманом (F. Strassman) в 1938 (см. Деление ядер) , послужила основой для создания ядерного оружия и . Своеобразие взаимодействия с веществом медленных H., имеющих де-бройлевскую длину волны порядка атомных расстояний (резонансные эффекты, дифракция и т. д.), служит основой широкого использования нейтронных пучков в физике твёрдого тела. (Классификацию H. по энергиям - быстрые, медленные, тепловые, холодные, ультрахолодные - см. в ст. Нейтронная физика .)

В свободном состоянии H. нестабилен - испытывает B-распад; n p + е - + v e ; его время жизни t n = = 898(14) с, граничная энергия спектра электронов 782 кэВ (см. Бета-распад нейтрона) . В связанном состоянии в составе стабильных ядер H. стабилен (по эксперим. оценкам, его время жизни превышает 10 32 лет). По астр. оценкам, 15% видимого вещества Вселенной представлено H., входящими в состав ядер 4 He. H. является осн. компонентой нейтронных звёзд . Свободные H. в природе образуются в ядерных реакциях, вызываемых a-частицами радиоактивного распада, космическими лучами и в результате спонтанного либо вынужденного деления тяжёлых ядер. Искусств. источниками H. служат ядерные реакторы, ядерные взрывы , ускорители протонов (на ср. энергии) и электронов с мишенями из тяжёлых элементов. Источниками монохроматичных пучков H. с энергией 14 МэВ являются низкоэнергетич. ускорители дейтронов с тритиевой или литиевой мишенью, а в будущем интенсивными источниками таких H. могут оказаться термоядерные установки УТС. (См. .)

Основные характеристики H .

Масса H. т п = 939,5731(27) МэВ/с 2 = = 1,008664967(34) ат. ед. массы 1,675 . 10 -24 г. Разность масс H. и протона измерена с наиб. точностью из энергетич. баланса реакции захвата H. протоном: n + p d + g (энергия g-кванта = 2,22 МэВ), m n - m p = 1,293323 (16) МэВ/с 2 .

Электрический заряд H. Q n = 0. Наиболее точные прямые измерения Q n выполнены по отклонению пучков холодных либо ультрахолодных H. в электростатич. поле: Q n <= 3·10 -21 е (е - заряд электрона). Косв. данные по электрич. нейтральности мак-роскопич. кол-ва газа дают Q n <= 2·10 -22 е .

Спин H. J = 1 / 2 был определён из прямых опытов по расщеплению пучка H. в неоднородном магн. поле на две компоненты [в общем случае число компонент равно (2J + 1)].

Последоват. описание структуры адронов на основе совр. теории сильного взаимодействия - квантовой хромодинамики - пока встречает теоретич. трудности, однако для мн. задач вполне удовлетворит. результаты даёт описание взаимодействия нуклонов, представляемых как элементарные объекты, посредством обмена мезонами. Эксперим. исследование пространств. структуры H. выполняется с помощью рассеяния высокоэнергичных лептонов (электронов, мюонов, нейтрино, рассматриваемых в совр. теории как точечные частицы) на дейтронах. Вклад рассеяния на протоне измеряется в отд. эксперименте и может быть вычтен с помощью определ. вычислит. процедуры.

Упругое и квазиупругое (с расщеплением дейтрона) рассеяние электронов на дейтроне позволяет найти распределение плотности электрич. заряда и магн. момента H. (формфактор H.). Согласно эксперименту, распределение плотности магн. момента H. с точностью порядка неск. процентов совпадает с распределением плотности электрич. заряда протона и имеет среднеквадратичный радиус ~0,8·10 -13 см (0,8 Ф). Магн. форм-фактор H. довольно хорошо описывается т. н. диполь-ной ф-лой G M n = m n (1 + q 2 /0,71) -2 , где q 2 - квадрат переданного импульса в единицах (ГэВ/с) 2 .

Более сложен вопрос о величине электрич. (зарядового) формфактора H. G E n . Из экспериментов по рассеянию на дейтроне можно сделать заключение, что G E n (q 2 ) <= 0,1 в интервале квадратов переданных импульсов (0-1) (ГэВ/с) 2 . При q 2 0 вследствие равенства нулю электрич. заряда H. G E n -> 0, однако экспериментально можно определить дG E n (q 2 )/дq 2 | q 2=0 . Эта величина наиб. точно находится из измерений длины рассеяния H. на электронной оболочке тяжёлых атомов. Осн. часть такого взаимодействия определяется магн. моментом H. Наиб. точные эксперименты дают длину ne-рассеяния а nе = -1,378(18) . 10 -16 см, что отличается от расчётной, определяемой магн. моментом H.: a nе = -1,468 . 10 -16 см. Разность этих значений даёт среднеквадратичный электрич. радиус H. <r 2 E n >= = 0,088(12) Фили дG E n (q 2)/дq 2 | q 2=0 = -0,02 F 2 . Эти циф-ры нельзя рассматривать как окончательные из-за большого разброса данных разл. экспериментов, превышающих приводимые ошибки.

Особенностью взаимодействия H. с большинством ядер является положит. длина рассеяния, что приводит к коэф. преломления < 1. Благодаря этому H., падающие из вакуума на границу вещества, могут испытывать полное внутр. отражение. При скорости u < (5-8) м/с (ультрахолодные H.) H. испытывают полное отражение от границы с углеродом, никелем, бериллием и др. при любом угле падения и могут удерживаться в замкнутых объёмах. Это свойство ультрахолодных H. широко используется в экспериментах (напр., для поиска ЭДМ H.) и позволяет реализовать нейтронооптич. устройства (см. Нейтронная оптика ).

H. и слабое (электрослабое) взаимодействие . Важным источником сведений об электрослабом взаимодействии является b-распад свободного H. .На квар-ковом уровне этот процесс соответствует переходу . Обратный процесс взаимодействия электронного с протоном, , наз. обратным b-распадом. К этому же классу процессов относится электронный захват ,имеющий место в ядрах, ре - nv e .

Распад свободного H. с учётом кинематич. параметров описывается двумя константами - векторной G V , являющейся вследствие векторного тока сохранения универс. константой слабого взаимодействия, и аксиально-векторной G A , величина к-рой определяется динамикой сильно взаимодействующих компонент нуклона - кварков и глюонов. Волновые ф-ции начального H. и конечного протона и матричный элемент перехода n p благодаря изотопич. инвариантности вычисляются достаточно точно. Вследствие этого вычисление констант G V и G A из распада свободного H. (в отличие от вычислений из b-распада ядер) не связано с учётом ядерно-структурных факторов.

Время жизни H. без учёта нек-рых поправок равно: t n = k(G 2 V + 3G 2 A ) -1 , где k включает кинематич. факторы и зависящие от граничной энергии b-распада кулонов-ские поправки и радиационные поправки .

Вероятность распада поляризов. H. со спином S , энергиями и импульсами электрона и антинейтрино и р е, в общем виде описывается выражением:

Коэф. корреляции a, А, В, D могут быть представлены в виде ф-ции от параметра а = (G A /G V ,)exp(i f). Фаза f отлична от нуля или p, если T -инвариантность нарушена. В табл. приведены эксперим. значения для этих коэф. и вытекающие из них значения a и f.


Имеется заметное отличие данных разл. экспериментов для т n , достигающее неск. процентов.

Описание электрослабого взаимодействия с участием H. при более высоких энергиях гораздо сложнее из-за необходимости учитывать структуру нуклонов. Напр., m - -захват, m - p nv m , описывается по крайней мере удвоенным числом констант. H. испытывает также электрослабое взаимодействие с др. адронами без участия лептонов. К таким процессам относятся следующие.

1) Распады гиперонов L np 0 , S + np + , S - np - и т. д. Приведённая вероятность этих распадов в неск. раз меньше, чем у нестранных частиц, что описывается введением угла Кабиббо (см. Кабиббо угол ).

2) Слабое взаимодействие n - n или n - p, к-рое проявляется как ядерные силы, не сохраняющие пространств. чётность .Обычная величина обусловленных ими эффектов порядка 10 -6 -10 -7 .

Взаимодействие H. со средними и тяжёлыми ядрами имеет ряд особенностей, приводящих в нек-рых случаях к значит. усилению эффектов несохранения чётности в ядрах . Один из таких эффектов - относит. разность сечения поглощения H. с по направлению распространения и против него, к-рая в случае ядра 139 La равна 7% при = 1,33 эВ, соответствуют щей р -волновому нейтронному резонансу. Причиной усиления является сочетание малой энергетич. ширины состояний компаунд-ядра и большой плотности уровней с противоположной чётностью у этого компаунд-ядра, обеспечивающей на 2-3 порядка большее смешивание компонент с разной чётностью, чем у низко лежащих состояний ядер. В результате ряд эффектов: асимметрия испускания g-квантов относительно спина захватываемого поляризов. H. в реакции (n, g), асимметрия вылета заряж. частиц при распаде компаунд-состояний в реакции (n, р) или асимметрия вылета лёгкого (или тяжёлого) осколка деления в реакции (n, f ). Асимметрии имеют величину 10 -4 -10 -3 при энергии тепловых H. В р -волновых нейтронных резонансах реализуется дополнит. усиление, связанное с подавленностью вероятности образования сохраняющей чётность компоненты этого компаунд-состояния (из-за малой нейтронной ширины р -резонанса) по отношению к примесной компоненте с противоположной четностью, являющейся s -резонан-сом. Именно сочетание неск. факторов усиления позволяет крайне слабому эффекту проявляться с величиной, характерной для ядерного взаимодействия.

Взаимодействия с нарушением барионного числа . Теоретич. модели великого объединения и суперобъединения предсказывают нестабильность барионов - их распад в лептоны и мезоны. Эти распады могут быть заметны только для легчайших барионов - p и п, входящих в состав атомных ядер. Для взаимодействия с изменением барионного числа на 1, DB = 1, можно было бы ожидать превращения H. типа: n е + p - , или превращения с испусканием странных мезонов. Поиски такого рода процессов производились в экспериментах с применением подземных детекторов с массой в неск. тысяч тонн. На основании этих экспериментов можно сделать заключение, что время распада H. с нарушением барионного числа составляет более 10 32 лет.

Др. возможный тип взаимодействия с DВ = 2 может привести к явлению взаимопревращения H. и антинейтронов в вакууме, т. е. к осцилляции . В отсутствие внеш. полей или при их малой величине состояния H. и антинейтрона вырождены, поскольку массы их одинаковы, поэтому даже сверхслабое взаимодействие может их перемешивать. Критерием малости внеш. полей является малость энергии взаимодействия магн. момента H. с магн. полем (n и n ~ имеют противоположные по знаку магн. моменты) по сравнению с энергией, определяемой временем T наблюдения H. (согласно соотношению неопределённостей), D <=hT -1 . При наблюдении рождения антинейтронов в пучке H. от реактора или др. источника T есть время пролёта H. до детектора. Число антинейтронов в пучке растёт с ростом времени пролёта квадратично: /N n ~ ~ (T /t осц) 2 , где t осц - время осцилляции.

Прямые эксперименты по наблюдению рождения и в пучках холодных H. от высокопоточного реактора дают ограничение t осц > 10 7 с. В готовящихся экспериментах можно ожидать увеличения чувствительности до уровня t осц ~ 10 9 с. Ограничивающими обстоятельствами являются макс. интенсивность пучков H. и имитация явлений антинейтронов в детекторе космич. лучами.

Др. метод наблюдения осцилляции - наблюдение аннигиляции антинейтронов, к-рые могут образовываться в стабильных ядрах. При этом из-за большого отличия энергий взаимодействий возникающего антинейтрона в ядре от энергии связи H. эфф. время наблюдения становится ~ 10 -22 с, но большое число наблюдаемых ядер (~10 32) частично компенсирует уменьшение чувствительности по сравнению с экспериментом на пучках H. Из данных подземных экспериментов по поиску распада протона об отсутствии событий с энерговыделением ~2 ГэВ можно заключить с нек-рой неопределённостью, зависящей от незнания точного вида взаимодействия антинейтрона внутри ядра, что t осц > (1-3) . 10 7 с. Существ. повышение предела t осц в этих экспериментах затруднено фоном, обусловленным взаимодействием космич. нейтрино с ядрами в подземных детекторах.

Следует отметить, что поиски распада нуклона с DB = 1 и поиски -осцилляции являются независимыми экспериментами, т. к. вызываются принципиально разл. видами взаимодействий.

Гравитационное взаимодействие H . Нейтрон - одна из немногих элементарных частиц, падение к-рой в гравитац. поле Земли можно наблюдать экспериментально. Прямое измерение для H. выполнено с точностью 0,3% и не отличается от макроскопического. Актуальным остаётся вопрос о соблюдении эквивалентности принципа (равенства инертной и гравитац. масс) для H. и протонов.

Самые точные эксперименты выполнены методом Эт-веша для тел, имеющих разные ср. значения отношения A/Z , где А - ат. номер, Z - заряд ядер (в ед. элементарного заряда е) . Из этих опытов следует одинаковость ускорения свободного падения для H. и протонов на уровне 2·10 -9 , а равенство гравитац. и инертной масс на уровне ~10 -12 .

Гравитац. ускорение и замедление широко используются в опытах с ультрахолодными H. Применение гравитац. рефрактометра для холодных и ультрахолодных H. позволяет с большой точностью измерить длины когерентного рассеяния H. на веществе.

H. в космологии и астрофизике

Согласно совр. представлениям, в модели Горячей Вселенной (см. Горячей Вселенной теория )образование барионов, в т. ч. протонов и H., происходит в первые минуты жизни Вселенной. В дальнейшем нек-рая часть H., не успевших распасться, захватывается протонами с образованием 4 He. Соотношение водорода и 4 He при этом составляет по массе 70% к 30%. При формировании звёзд и их эволюции происходит дальнейший нуклеосинтез , вплоть до ядер железа. Образование более тяжёлых ядер происходит в результате взрывов сверхновых с рождением нейтронных звёзд, создающих возможность последоват. захвата H. нуклидами. При этом комбинация т. н. s -процесса - медленного захвата H. с b-распадом между последовательными захватами и r -процесса - быстрого последоват. захвата при взрывах звёзд в осн. может объяснить наблюдаемую распространённость элементов в космич. объектах.

В первичной компоненте космич. лучей H. из-за своей нестабильности вероятно отсутствуют. H., образующиеся у поверхности Земли, диффундирующие в космич. пространство и распадающиеся там, по-видимому, вносят вклад в формирование электронной и протонной компоненты радиационных поясов Земли.

Лит.: Гуревич И. С., Тарасов Л. В., Физика нейтронов низких энергий, M., 1965; Александров Ю. А.,. Фундаментальные свойства нейтрона, 2 изд., M., 1982.

Глава первая. СВОЙСТВА СТАБИЛЬНЫХ ЯДЕР

Выше уже было сказано, что ядро состоит из протонов и нейтронов, связанных ядерными силами. Если измерять массу ядра в атомных единицах массы, то она должна быть близка к массе протона, умноженной на целое число называемое массовым числом. Если заряд ядра а массовое число то это означает, что в состав ядра входит протонов и нейтронов. (Число нейтронов в составе ядра обозначается обычно через

Эти свойства ядра отражены в символических обозначениях, которые будут использованы в дальнейшем в виде

где X - название элемента, атому которого принадлежит ядро (например, ядра: гелия - , кислорода - , железа - урана

К числу основных характеристик стабильных ядер можно отнести: заряд, массу, радиус, механический и магнитный моменты, спектр возбужденных состояний, четность и квадрупольный момент. Радиоактивные (нестабильные) ядра дополнительно характеризуются временем жизни, типом радиоактивных превращений, энергией испускаемых частиц и рядом других специальных свойств, о которых будет сказано далее.

Прежде всего рассмотрим свойства элементарных частиц, из которых состоит ядро: протона и нейтрона.

§ 1. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ПРОТОНА И НЕЙТРОНА

Масса. В единицах массы электрона: масса протона масса нейтрона .

В атомных единицах массы: масса протона масса нейтрона

В энергетических единицах масса покоя протона масса покоя нейтрона

Электрический заряд. q - параметр, характеризующий взаимодействие частицы с электрическим полем, выражается в единицах заряда электрона где

Все элементарные частицы несут количество электричества, равное либо 0, либо Заряд протона Заряд нейтрона равен нулю.

Спин. Спины протона и нейтрона равны Обе частицы являются фермионами и подчиняются статистике Ферми-Дирака, а следовательно, и принципу Паули.

Магнитный момент. Если подставить в формулу (10), определяющую магнитный момент электрона вместо массы электрона массу протона, получим

Величина называется ядерным магнитоном. Можно было предположить по аналогии с электроном, что спиновый магнитный момент протона равен Однако опыт показал, что собственный магнитный момент протона больше ядерного магнетона: по современным данным

Кроме того, оказалось, что незаряженная частица - нейтрон - также имеет магнитный момент, отличный от нуля и равный

Наличие магнитного момента у нейтрона и столь большое значение магнитного момента у протона противоречат предположениям о точечности этих частиц. Ряд экспериментальных данных, полученных в последние годы, свидетельствует о том, что и протон и нейтрон обладают сложной неоднородной структурой. В центре нейтрона при этом находится положительный заряд, а на периферии равный ему по величине распределенный в объеме частицы отрицательный заряд. Но поскольку магнитный момент определяется не только величиной обтекающего тока, но и охватываемой им площадью, то создаваемые ими магнитные моменты не будут равны. Поэтому нейтрон может обладать магнитным моментом, оставаясь в целом нейтральным.

Взаимные превращения нуклонов. Масса нейтрона больше массы протона на 0,14%, или на 2,5 массы электрона,

В свободном состоянии нейтрон распадается на протон, электрон и антинейтрино: Среднее время жизни его близко к 17 мин.

Протон - частица стабильная. Однако внутри ядра он может превращаться в нейтрон; при этом реакция идет по схеме

Разница в массах частиц, стоящих слева и справа, компенсируется за счет энергии, сообщаемой протону другими нуклонами ядра.

Протон и нейтрон имеют одинаковые спины, почти одинаковые массы и могут превращаться друг в друга. В дальнейшем будет показано, что и ядерные силы, действующие между этими частицами попарно, тоже одинаковы. Поэтому их называют общим наименованием - нуклон и говорят, что нуклон может находиться в двух состояниях: протон и нейтрон, отличающихся своим отношением к электромагнитному полю.

Нейтроны и протоны взаимодействуют благодаря существованию ядерных сил, имеющих неэлектрическую природу. Своим происхождением ядерные силы обязаны обмену мезонами. Если изобразить зависимость потенциальной энергии взаимодействия протона и нейтрона малых энергий от расстояния между ними то приближенно она будет иметь вид графика, представленного на рис. 5, а, т. е. имеет форму потенциальной ямы.

Рис. 5. Зависимость потенциальной энергии взаимодействия от расстояния между нуклонами: а - для пар нейтрон - нейтрон или нейтрон - протон; б - для пары протон - протон

Многим со школы хорошо известно, что все вещества состоял из атомы. Атомы в свою очередь состоят из протонов и нейтронов образующих ядро атомы и электронов, расположенных на некотором расстоянии от ядра. Многие также слышали, что свет тоже состоит из частиц – фотонов. Однако на этом мир частиц не ограничивается. На сегодняшний день известно более 400 различных элементарных частиц. Попробуем понять, чем элементарные частицы отличаются друг от друга.

Существует множество параметров, по которым можно отличить элементарные частицы друг от друга:

  • Масса.
  • Электрический заряд.
  • Время жизни. Почти все элементарные частицы имеют конечное время жизни по истечении которого они распадаются.
  • Спин. Его можно, весьма приближенно считать как вращательный момент.

Еще несколько параметров, или как их принято называть в науке квантовых чисел. Эти параметры не всегда имеют понятный физический смысл, но они нужны для того, чтобы отличать одни частицы от других. Все эти дополнительные параметры введены как некоторые величины, сохраняющиеся во взаимодействии.

Массой обладают почти все частицы, кроме фотоны и нейтрино (по последним данным нейтрино обладают массой, но столь малой, что часто ее считают нулем). Без массовые частицы могут существуют только в движении. Масса у всех частиц различна. Минимальной массой, не считая нейтрино, обладает электрон. Частицы, которые называются мезонами обладают массой в 300-400 раз большей массы электрона, протон и нейтрон почти в 2000 раз тяжелее электрона. Сейчас уже открыты частицы, которые почти в 100 раз тяжелее протона. Масса,(или ее энергетический эквивалент по формуле Эйнштейна:

сохраняется во всех взаимодействиях элементарных частиц.

Электрическим зарядом обладают не все частицы, а значит что не все частицы способны участвовать в электромагнитном взаимодействии. У всех свободно существующих частиц электрический заряд кратен заряду электрона. Кроме свободно существующих частиц существуют также частицы, находящие только в связанном состоянии, о них мы скажем чуть позже.

Спин, как и другие квантовые числа у различных частиц различны и характеризуют их уникальность. Некоторые квантовые числа сохраняются в одних взаимодействиях, некоторые в других. Все эти квантовые числа определяют то, какие частицы взаимодействуют с какими и как.

Время жизни также очень важная характеристика частицы и ее мы рассмотрим наиболее подробно. Начнем с замечания. Как мы уже сказали в начале статьи – все что нас окружает состоит из атомов (электронов, протонов и нейтронов) и света (фотонов). А где же тогда еще сотни различных видов элементарных частиц. Ответ прост – всюду вокруг нас, но мы из не замечаем по двум причинам.

Первая из них – почти все остальные частицы живут очень мало, примерно 10 в минус 10 степени секунд и меньше, и потому не образовывают таких структур как атомы, кристаллические решетки и т.п. Вторая причина касается нейтрино, эти частицы хоть и не распадаются, но они подвержены только слабому и гравитационному взаимодействию. Это значит, что эти частицы взаимодействуют на столько незначительно, что обнаружить из почти невозможно.

Представим наглядно в чем выражается то, на сколько частица хорошо взаимодействуем. Например поток электронов можно остановить довольно тонким листом стали, порядка нескольких миллиметров. Это произойдет потому, что электроны сразу начнут взаимодействовать с частицами листа стали, будут резко менять свой направления, излучать фотоны, и таким образом довольно быстро потеряют энергию. С потоком нейтрино все не так, они почти без взаимодействий могут пройти насквозь Земного Шара. И потому обнаружить их очень тяжело.

Итак, большинство частиц живут очень короткое время, по истечении которого она распадаются. Распады частиц- наиболее часто встречающиеся реакции. В результате распада одна частица распадается на несколько других меньшей массы, а те в свою очередь распадаются дальше. Все распады подчиняются определенным правилам – законам сохранения. Так, например, в результате распада должен сохраняться электрический заряд, масса, спин и еще ряд квантовых чисел. Некоторые квантовые числа в ходе распада могут меняться, но тоже подчиняясь определенным правилам. Именно правила распада говорят нам о том, что электрон и протон это стабильные частицы. Они уже не могут распадаются подчиняясь правилам распада, и потому именно ими заканчиваются цепочки распада.

Здесь хочется сказать несколько слов о нейтроне. Свободный нейтрон тоже распадается, на протон и электрон примерно за 15 минут. Однако когда нейтрон находится в атомном ядре это не происходит. Этот факт можно объяснить различными способами. Например так, когда в ядре атома появляется электрон и лишний протон от распавшегося нейтрона, то тут же происходит обратная реакция – один из протонов поглощает электрон и превращается в нейтрон. Такая картина называется динамическим равновесием. Она наблюдалась в вселенной на ранней стадии ее развития вскоре после большого взрыва.

Кроме реакций распада есть еще реакции рассеяния – когда две или более частиц вступают во взаимодействие одновременно, и в результате получается одна или несколько других частиц. Также есть реакции поглощение, когда из двух или более частиц получается одна. Все реакции происходят в результате сильного слабого или электромагнитного взаимодействия. Реакции идущие за счет сильного взаимодействия идут быстрее всего, время такой реакции может достигать 10 в минус 20 секунды. Скорость реакций идущих за счет электромагнитного взаимодействия ниже, тут время может быть порядка 10 в минус 8 секунды. Для реакций слабого взаимодействия время может достигать десятков секунд а иногда и годы.

В завершении рассказа про частицы расскажем про кварки. Кварки – это элементарные частицы, имеющие электрический заряд кратный трети заряда электрона и которые не могут существовать в свободном состоянии. Их Взаимодействие устроено так, что они могут жить только в составе чего либо. Например комбинация из трех кварков определенного типа образуют протон. Другая комбинация дает нейтрон. Всего известно 6 кварков. Их различные комбинации дают нам разные частицы, и хотя далеко не все комбинации кварков разрешены физическими законами, частиц, составленных из кварков довольно много.

Здесь может возникнуть вопрос, как можно протон называть элементарным если он состоит из кварков. Очень просто – протон элементарен, так как его невозможно расщепить на составные части – кварки. Все частицы, которые участвуют в сильном взаимодействии состоят из кварков, и при этом являются элементарными.

Понимание взаимодействий элементарных частиц очень важно для понимания устройства вселенной. Все что происходит с макро телами есть результат взаимодействия частиц. Именно взаимодействием частиц описываются рост деревьев на земле, реакции в недрах звезд, излучение нейтронных звезд и многое другое.

Вероятности и квантовая механика >

Поговорим о том, как найти протоны, нейтроны и электроны. В атоме существует три вида элементарных частиц, причем у каждой есть свой элементарный заряд, масса.

Строение ядра

Для того чтобы понять, как найти протоны, нейтроны и электроны, представим Оно является основной частью атома. Внутри ядра располагаются протоны и нейтроны, именуемые нуклонами. Внутри ядра эти частицы могут переходить друг в друга.

Например, чтобы найти протоны, нейтроны и электроны в необходимо знать его порядковый номер. Если учесть, что именно этот элемент возглавляет периодическую систему, то в его ядре содержится один протон.

Диаметр атомного ядра составляет десятитысячную долю всего размера атома. В нем сосредоточена основная масса всего атома. По массе ядро превышает в тысячи раз сумму всех электронов, имеющихся в атоме.

Характеристика частиц

Рассмотрим, как найти протоны, нейтроны и электроны в атоме, и узнаем об их особенностях. Протон - это которая соответствует ядру атома водорода. Его масса превышает электрон в 1836 раз. Для определения единицы электричества, проходящего через проводник с заданным поперечным сечением, используют электрический заряд.

У каждого атома в ядре располагается определенное количество протонов. Оно является постоянной величиной, характеризует химические и физические свойства данного элемента.

Как найти протоны, нейтроны и электроны в атоме углерода? Порядковый номер данного химического элемента 6, следовательно, в ядре содержится шесть протонов. Согласно планетарной вокруг ядра по орбитам движется шесть электронов. Для определения количество нейтронов из значения углерода (12) вычитаем количество протонов (6), получаем шесть нейтронов.

Для атома железа число протонов соответствует 26, то есть этот элемент имеет 26-й порядковый номер в таблице Менделеева.

Нейтрон является электрически нейтральной частицей, нестабильной в свободном состоянии. Нейтрон способен самопроизвольно превращаться в положительно заряженный протон, испуская при этом антинейтрино и электрон. Средний период его полураспада составляет 12 минут. Массовое число - это суммарное значение количества протонов и нейтронов внутри ядра атома. Попробуем выяснить, как найти протоны, нейтроны и электроны в ионе? Если атом во время химического взаимодействия с другим элементом приобретает положительную степень окисления, то число протонов и нейтронов в нем не изменяется, меньше становится только электронов.

Заключение

Существовало несколько теорий, касающихся строения атома, но ни одна из них не была жизнеспособной. До версии, созданной Резерфордом, не было детального пояснения о расположении внутри ядра протонов и нейтронов, а также о вращении по круговым орбитам электронов. После появления теории планетарного строения атома у исследователей появилась возможность не только определять количество элементарных частиц в атоме, но и предсказывать физические и химические свойства конкретного химического элемента.

Как только случается встретиться с неизвестным предметом, так обязательно возникает меркантильно-житейский вопрос - а сколько это весит. А вот если это неизвестное - элементарная частица, что тогда? А ничего, вопрос остается прежним: какая же масса этой частицы. Если бы кто-то занялся подсчетом затрат, понесенных человечеством для удовлетворения своего любопытства на исследования, точнее, измерения, массы элементарных частиц, то мы бы узнали, что, например, масса нейтрона в килограммах с умопомрачительным количеством нулей после запятой, обошлось человечеству дороже, чем самое дорогое строительство с таким же количеством нулей до запятой.

А начиналось все очень буднично: в руководимой Дж. Дж.Томсоном лаборатории в 1897 г. проводились исследования катодных лучей. В результате была определена универсальная константа для Вселенной - величина отношения массы электрона к его заряду. До определения массы электрона осталось совсем немного - определить его заряд. Через 12 лет сумел это сделать. Он проводил эксперименты с падающими в электрическом поле капельками масла, и ему удалось не только уравновесить их вес величиной поля, но и провести необходимые и чрезвычайно тонкие измерения. Их результат - численное значение массы электрона:

me = 9,10938215(15) * 10-31кг.

К этому времени относятся и исследования структуры где первопроходцем был Эрнест Резерфорд. Именно он, наблюдая за рассеянием заряженных частиц, предложил модель атома с внешней электронной оболочкой и положительным ядром. Частица, которой в была предложена роль ядра простейшего атома, получалась при бомбардировке азота Это была первая ядерная реакция, полученная в лаборатории - в ее результате из азота получался кислород и ядра будущих названных протонами. Однако, альфа-лучи состоят из сложных частиц: кроме двух протонов они содержат еще два нейтрона. Масса нейтрона почти равна и общая масса альфа-частицы получается вполне солидной для того, чтоб разрушить встречное ядро и отколоть от него «кусочек», что и случилось.

Поток положительных протонов отклонялся электрическим полем, компенсируя его отклонение, вызываемое В этих экспериментах определить массу протона уже не составляло труда. Но самым интересным был вопрос о том, какое соотношение имеют масса протона и электрона. Загадка была тут же решена: масса протона превышает массу электрона чуть больше, чем 1836 раз.

Итак, первоначально, модель атома предполагалась, по Резерфорду, как электронно-протонный комплект с одинаковым числом протонов и электронов. Однако совсем скоро оказалось, что первичная ядерная модель не полностью описывает все наблюдаемые эффекты по взаимодействиям элементарных частиц. Только в 1932 году подтвердил гипотезу о дополнительных частицах в составе ядра. Их назвали нейтронами, нейтральными протонами, т.к. они не имели заряда. Именно это обстоятельство обуславливает их большую проникающую способность - они не расходуют свою энергию на ионизацию встречных атомов. Масса нейтрона совсем незначительно превышает массу протона - всего примерно на 2,6 электронных массы больше.

Химические свойства веществ и соединений, которые образуются данным элементом, определяются числом протонов в ядре атома. Со временем подтвердилось участие протона в сильных и других фундаментальных взаимодействиях: электромагнитном, гравитационном и слабом. При этом, несмотря на то, что заряд нейтрона отсутствует, при сильных взаимодействиях протон и нейтрон рассматривают как элементарную частицу нуклон в различных квантовых состояниях. Отчасти сходство поведения этих частиц объясняется и тем, что масса нейтрона очень мало отличается от массы протона. Стабильность протонов позволяет использовать их, предварительно ускорив до высоких скоростей, в качестве бомбардирующих частиц для осуществления ядерных реакций.



Пособия и алименты