Оксид серы 4 плюс. Оксиды серы

Оксид серы (сернистый газ, серы диоксид, ангидрид сернистый) - это бесцветный газ, имеющий в в нормальных условиях резкий характерный запах (похож на запах загорающейся спички). Сжижается под давлением при комнатной температуре. Сернистый газ растворим в воде, при этом образуется нестойкая серная кислота. Также это вещество растворяется в серной кислоте и этаноле. Это один из основных компонентов, входящих в состав вулканических газов.

Сернистый газ

Получение SO2 - диоксида серы - промышленным способом заключается в сжигании серы или обжиге сульфидов (используется в основном пирит).

4FeS2 (пирит) + 11O2 = 2Fe2O3 + 8SO2 (сернистый газ).

В условиях лаборатории сернистый газ можно получить путем воздействия сильных кислот на гидросульфиты и сульфиты. При этом получившаяся сернистая кислота сразу распадается на воду и сернистый газ. Например:

Na2SO3 + H2SO4 (серная кислота) = Na2SO4 + H2SO3 (сернистая кислота).
H2SO3 (сернистая кислота) = H2O (вода) + SO2 (сернистый газ).

Третий способ получения сернистого ангидрида заключается в воздействии концентрированной серной кислоты при нагревании на малоактивные металлы. Например: Cu (медь) + 2H2SO4 (серная кислота) = CuSO4 (сульфат меди) + SO2 (диоксид серы) + 2H2O (вода).

Химические свойства диоксида серы

Формула сернистого газа - SO3. Это вещество относится к кислотный оксидам.

1. Диоксид серы растворяется в воде, при этом образуется сернистая кислота. В обычных условиях данная реакция обратима.

SO2 (диоксид серы) + H2O (вода) = H2SO3 (сернистая кислота).

2. С щелочами диоксид серы образует сульфиты. Например: 2NaOH (гидроксид натрия) + SO2 (сернистый газ)= Na2SO3 (сульфит натрия) + H2O (вода).

3. Химическая активность сернистого газа достаточно велика. Наиболее выражены восстановительные свойства сернистого ангидрида. В таких реакциях степень окисления серы повышается. Например: 1) SO2 (диоксид серы) + Br2 (бром) + 2H2O (вода) = H2SO4 (серная кислота) + 2HBr (бромоводород); 2) 2SO2 (диоксид серы) + O2 (кислород) = 2SO3 (сульфит); 3) 5SO2 (диоксид серы) + 2KMnO4 (перманганат калия) + 2H2O (вода) = 2H2SO4 (серная кислота) + 2MnSO4 (сульфат марганца) + K2SO4 (сульфат калия).

Последняя реакция - это пример качественной реакции на SO2 и SO3. Происходит обесцвечивание раствора фиолетового цвета).

4. В условиях присутствия сильных восстановителей сернистый ангидрид может проявлять свойства окислительные. Например, для того чтобы в металлургической промышленности извлечь серу из отходящих газов, используют восстановление диоксида серы оксидом углерода (CO): SO2 (диоксид серы) + 2CO (оксид углерода) = 2CO2 + S (сера).

Также окислительные свойства этого вещества используют в целях получения фосфорноваристой ксилоты: PH3 (фосфин) + SO2 (сернистый газ) = H3PO2 (фосфорноваристая кислота) + S (сера).

Где применяют сернистый газ

В основном диоксид серы используют для получения кислоты серной. Также его применяют как в производстве слабоалкогольных напитков (вино и другие напитки средней ценовой категории). Благодаря свойству этого газа убивать различные микроорганизмы, им окуривают складские помещения и овощехранилища. Помимо этого, оксид серы используют для отбеливания шерсти, шелка, соломы (тех материалов, которые нельзя отбелить хлором). В лабораториях сернистый газ применяют в качестве растворителя и в целях получения различных солей кислоты сернистой.

Физиологическое воздействие

Сернистый газ обладает сильными токсическими свойствами. Симптомы отравления - это кашель, насморк, охриплость голоса, своеобразный привкус во рту, сильное першение в горле. При вдыхании диоксида серы в высоких концентрациях возникает затруднение глотания и удушье, расстройство речи, тошнота и рвота, возможно развитие острого отека легких.

ПДК сернистого газа:
- в помещении - 10 мг/м³;
- среднесуточная максимально-разовая в атмосферном воздухе - 0,05 мг/м³.

Чувствительность к диоксиду серы у отдельных людей, растений и животных различна. Например, среди деревьев наиболее устойчивы дуб и береза, а наименее - ель и сосна.

Сера распространена в земной коре, среди других элементов занимает шестнадцатое место. Она встречается как в свободном состоянии, так и в связанном виде. Неметаллические свойства характерны для этого химического элемента. Ее латинское название «Sulfur», обозначается символом S. Элемент входит в состав различных ионов соединений, содержащих кислород и/или водород, образует много веществ, относящихся к классам кислот, солей и несколько окислов, каждый из которых может быть назван оксид серы с добавлением символов, обозначающих валентность. Степени окисления, которые она проявляет в различных соединениях +6, +4, +2, 0, −1, −2. Известны окислы серы с различной степенью окисления. Самые распространенные — это диоксид и триоксид серы. Менее известными являются монооксид серы, а также высшие (кроме SO3) и низшие окислы этого элемента.

Монооксид серы

Неорганическое соединение, называемое оксид серы II, SO, по внешнему виду это вещество является бесцветным газом. При контакте с водой он не растворяется, а реагирует с ней. Это очень редкое соединение, которое встречается только в разреженной газовой среде. Молекула SO термодинамически неустойчива, превращается изначально в S2O2, (называют disulfur газ или пероксид серы). Из-за редкого появления монооксида серы в нашей атмосфере и низкой стабильности молекулы трудно в полной мере определить опасности этого вещества. Но в сконденсированном или более концентрированном виде окисел превращается в пероксид, который является относительно токсичным и едким. Это соединение также легко воспламеняется (напоминает этим свойством метан), при сжигании получается диоксид серы — ядовитый газ. Оксид серы 2 был обнаружен около Ио (одного из в атмосфере Венеры и в межзвездной среде. Предполагается, что на Ио он получается в результате вулканических и фотохимических процессов. Основные фотохимические реакции выглядят следующим образом: O + S2 → S + SO и SO2 → SO + O.

Сернистый газ

Оксид серы IV, или двуокись серы (SO2) является бесцветным газом с удушливым резким запахом. При температуре минус 10 С он переходит в жидкое состояние, а при температуре минус 73 С затвердевает. При 20С в 1 литре воды растворяется около 40 объемов SO2.

Этот оксид серы, растворяясь в воде, образует сернистую кислоту, так как является ее ангидридом: SO2 + H2O ↔ H2SO3.

Он взаимодействует с основаниями и 2NaOH + SO2 → Na2SO3 + H2O и SO2 + CaO → CaSO3.

Для сернистого газа характерны свойства и окислителя, и восстановителя. Он окисляется кислородом воздуха до серного ангидрида в присутствии катализатора: SO2 + O2 → 2SO3. С сильными восстановителями, такими как сероводород, играет роль окислителя: H2S + SO2 → S + H2O.

Сернистый газ в промышленности используют в основном для получения серной кислоты. Диоксид серы получают сжиганием серы или железного колчедана: 11O2 + 4FeS2 → 2Fe2O3 + 8SO2.

Серный ангидрид

Оксид серы VI, или трехокись серы (SO3) является промежуточным продуктом и самостоятельного значения не имеет. По внешнему виду это бесцветная жидкость. Она кипит при температуре 45 С, а ниже 17 С превращается в белую кристаллическую массу. Этот серы (со степенью окисления атома серы + 6) отличается крайней гигроскопичностью. С водой он образует кислоту серную: SO3 + H2O ↔ H2SO4. Растворяясь в воде, выделяет большое количество тепла и, если прибавлять не постепенно, а сразу большое количество оксида, то может произойти взрыв. Триоксид серы хорошо растворяется в концентрированной кислоте серной с образованием олеума. Содержание SO3 в олеуме достигает 60 %. Для этого соединения серы характерны все свойства

Высшие и низшие оксиды серы

Серы представляют собой группу химических соединений с формулой SO3 + х, где х может быть 0 или 1. Мономерный окисел SO4 содержат пероксогруппу (O-O) и характеризуется, как и окисел SO3, степенью окисления серы +6. Этот оксид серы может быть получен при низких температурах (ниже 78 К) в результате реакции SO3 и или фотолизе SO3 в смеси с озоном.

Низшие оксиды серы представляют собой группу химических соединений, в которую входят:

  • SO (оксид серы и его димер S2O2);
  • монооксиды серы SnO (представляют собой циклические соединения, состоящие из колец, образованных атомами серы, при этом n может быть от 5 до 10);
  • S7O2;
  • полимерные оксиды серы.

Интерес к низшим оксидам серы увеличился. Это связано с необходимостью изучения их содержания в наземной и внеземной атмосферах.

Строение молекулы SO2

Строение молекулы SO2 аналогично строению молекулы озона. Атом серы находится в состоянии sp2-гибридизации, форма расположения орбиталей – правильный треугольник, форма молекулы – угловая. На атоме серы имеется неподеленная электронная пара. Длина связи S – O равна 0,143 нм, валентный угол составляет 119,5°.

Строение соответствует следующим резонансным структурам:

В отличие от озона, кратность связи S – O равна 2, то есть основной вклад вносит первая резонансная структура. Молекула отличается высокой термической устойчивостью.

Соединения серы +4 – проявляют окислительно-восстановительную двойственность, но с преобладанием восстановительных свойств.

1. Взаимодействие SO2 c кислородом

2S+4О2 + О 2 S+6О

2. При пропускании SO2 через сероводородную кислоту образуется сера.

S+4О2 + 2Н2S-2 → 3So + 2 Н2О

4 S+4 + 4 → So 1 - окислитель (восстановление)

S-2 - 2 → Sо 2 - восстановитель (окисление)

3. Сернистая кислота медленно окисляется кислородом воздуха в серную кислоту.

2H2S+4O3 + 2О → 2H2S+6O

4 S+4 - 2 → S+6 2 - восстановитель (окисление)

О + 4 → 2О-2 1 - окислитель (восстановление)

Получение:

1) оксида серы (IV) в промышленности:

горение серы:

обжиг пирита:

4FeS2 + 11O2 = 2Fe2O3

в лаборатории:

Na2SO3 + H2SO4 = Na2SO4 + SO2 + H2O

Сернистый газ , предупреждая брожение, облегчает осаждение загрязняющих веществ, обрывков тканей винограда с болезнетворной микрофлорой и позволяет проводить алкогольное брожение на чистых культурах дрожжей с целью увеличения выхода этилового спирта и улучшении состава других продуктов алкогольного брожения.

Роль сернистого газа таким образом не ограничивается антисептирующими действиями, оздоровляющими среду, но и распространяется на улучшение технологических условий брожения и хранения вина.

Эти условия при правильном использовании сернистого газа (ограничение дозировки и времени соприкосновения с воздухом) ведут к повышению качества вин и соков, их аромата, вкуса, а также прозрачности и цвета - свойств, связанных с устойчивостью вина и сока к помутнениям.

Сернистый газ - самый распространенный загрязнитель воздуха. Он выделяется всеми энергетическими установками при сжигании органического топлива. Сернистый газ может также выделяться предприятиями металлургической промышленности (источник -коксующиеся угли), а также рядом химических производств (например, производство серной кислоты). Он образуется при разложении содержащих серу аминокислот, входивших в состав белков древних растений, образовавших залежи угля, нефти, горючих сланцев.


Находит применение в промышленности для беления различных продуктов: сукна, шелка, бумажной массы, перьев, соломы, воска, щетины, конского волоса, пищевых продуктов, для дезинфекции фруктов и консервов и т. д. В качестве побочного продукта С. г. образуется и выделяется в воздух рабочих помещений в ряде производств: серной к-ты, целлюлезы, при обжиге руд, содержащих, сернистые металлы, в травилках на металлозаводах, при производстве стекла, ультрамарина и др., весьма часто С. г. содержится в воздухе котельных и зольных помещений, где он образуется при сжигании содержащих серу углей.

При растворении в воде образуется слабая и неустойчивая сернистая кислота H2SO3 (существует только в водном растворе)

SO2 + H2O ↔ H2SO3

Сернистая кислота диссоциирует ступенчато:

H2SO3 ↔ H+ + HSO3- (первая ступень, образуется гидросульфит – анион)

HSO3- ↔ H+ + SO32- (вторая ступень, образуется анион сульфит)

H2SO3 образует два ряда солей - средние (сульфиты) и кислые (гидросульфиты).

Качественной реакцией на соли сернистой кислоты является взаимодействие соли с сильной кислотой, при этом выделяется газ SO2 с резким запахом:

Na2SO3 + 2HCl → 2NaCl + SO2 + H2O 2H+ + SO32- → SO2 + H2O

Оксид серы(IV) обладает кислотными свойствами, которые проявляются в реакциях с веществами, проявляющими основные свойства. Кислотные свойства проявляются при взаимодействии с водой. При этом образуется раствор сернистой кислоты:

Степень окисления серы в сернистом газе (+4) обусловливает восстановительные и окислительные свойства сернистого газа:

вос-тель: S+4 – 2e => S+6

ок-тель: S+4 + 4e => S0

Восстановительные свойства проявляются в реакциях с сильными окислителями: кислородом, галогенами, азотной кислотой, перманганатом калия и другими. Например:

2SO2 + O2 = 2SO3

S+4 – 2e => S+6 2

O20 + 4e => 2O-2 1

С сильными восстановителями газ проявляет окислительные свойств. Например, если смешать сернистый газ и сероводород, то они взаимодействуют при обычных условиях:

2H2S + SO2 = 3S + 2H2O

S-2 – 2e => S0 2

S+4 + 4e => S0 1

Сернистая кислота существует только в растворе. Она неустойчива и разлагается на сернистый газ и воду. Сернистая кислота не относится к сильным кислотам. Она является кислотой средней силы и диссоциирует ступенчато. При добавлении к сернистой кислоте щёлочи образуются соли. Сернистая кислота даёт два ряда солей: средние – сульфиты и кислые – гидросульфиты.

Оксид серы(VI)

Триоксид серы проявляется кислотные свойства. Он бурно реагирует с водой, при этом выделяется большое количество теплоты. Эту реакцию используют для получения важнейшего продукта химической промышленности – серной кислоты.

SO3 + H2O = H2SO4

Поскольку сера в триоксиде серы имеет высшую степень окисления, то оксид серы(VI) проявляет окислительные свойства. Например, он окисляет галогениды, неметаллы с низкой электроотрицательностью:

2SO3 + C = 2SO2 + CO2

S+6 + 2e => S+4 2

C0 – 4e => C+4 2

Серная кислота вступает в реакции трёх типов: кислотно-основные, ионообменные, окислительно-восстановительные. Так же активно она взаимодействует с органическими веществами.

Кислотно-основные реакции

Серная кислота проявляет кислотные свойства в реакциях с основаниями и основными оксидами. Эти реакции лучше проводить с разбавленной серной кислотой. Поскольку серная кислота является двухосновной, то она может образовывать как средние соли (сульфаты), так и кислые (гидросульфаты).

Ионообменные реакции

Для серной кислоты характерны ионообменные реакции. При этом она взаимодействует с растворами солей, образуя осадок, слабую кислоту либо выделяя газ. Эти реакции осуществляются с большей скоростью, если брать 45%-ную или ещё более разбавленную серную кислоту. Выделение газа происходит в реакциях с солями неустойчивых кислот, распадающихся с образованием газов (угольной, сернистой, сероводородной) либо с образованием летучих кислот, таких как соляная.

Окислительно-восстановительные реакции

Наиболее ярко серная кислота проявляет свои свойства в окислительно-восстановительных реакциях, так как в её составе сера имеет высшую степень окисления +6. Окислительные свойства серной кислоты можно обнаружить в реакции, например, с медью.

В молекуле серной кислоты два элемента-окислителя: атом серы с С.О. +6 и ионы водорода H+. Медь не может быть окислена водородом в степени окисления +1, но сера может. Это является причиной окисления серной кислотой такого неактивного металла, как медь.

Диоксид серы - бесцветный газ с резким запахом. Молекула имеет угловую форму.

  • Температура плавления - -75,46 °С,
  • Температура кипения - -10,6 °С,
  • Плотность газа - 2,92655 г/л.

Легко сжижается в бесцветную легкоподвижную жидкость при температуре 25 °С и давлении около 0,5 МПа.

Для жидкой формы плотность равна 1,4619 г/см 3 (при - 10 °С).

Твердый диоксид серы - бесцветные кристаллы, ромбической сингонии.

Диоксид серы заметно диссоциирует только около 2800 °С.

Диссоциация жидкого диоксида серы проходит по схеме:

2SO 2 ↔ SO 2+ + SO 3 2-

Трехмерная модель молекулы

Растворимость диоксида серы в воде зависит от температуры:

  • при 0 °С в 100 г воды растворяется 22,8 г диоксида серы,
  • при 20 °С - 11,5 г,
  • при 90 °С - 2,1 г.

Водный раствор диоксида серы - это сернистая кислота H 2 SO 3.

Диоксид серы растворим в этаноле, H 2 SO 4 , олеуме, CH 3 COOH. Жидкий сернистый ангидрид смешивается в любых соотношениях с SO 3. CHCl 3 , CS 2 , диэтиловым эфиром.

Жидкий сернистый ангидрид растворяет хлориды. Иодиды и роданиды металлов не растворяются.

Соли, растворенные в жидком диоксиде серы, диссоциируют.

Диоксид серы способен восстанавливаться до серы и окисляться до шестивалентных соединений серы.

Диоксид серы токсичен. При концентрации 0,03-0,05 мг/л раздражает слизистые оболочки, органы дыхания, глаза.

Основной промышленный способ получения диоксида серы - из серного колчедана FeS 2 путем его сжигания и дальнейшей обработки слабой холодной H 2 SO 4.

Кроме того, серный диоксид можно получить путем сжигания серы, а также как побочный продукт обжига медных и цинковых сульфидных руд.

Сульфидная сера доступна растениям только после перехода в сульфатную форму. Большая часть серы присутствует в почве в составе органических соединений, не усваиваемых растениями. Только после минерализации органических веществ и перехода серы в сульфатную форму органическая сера становится доступной для растений.

Химическая промышленность не выпускает удобрений с основным действующим веществом диоксидом серы. Однако в качестве примесей он содержится во многих удобрениях. К ним относятся фосфогипс, простой суперфосфат, сульфат аммония, сульфат калия, калимагнезия, гипс, сланцевая зола, навоз, торф и многие другие.

Поглощение диоксида серы растениями

Сера поступает в растения через корни в виде SO 4 2- и листья в виде диоксида серы. При этом поглощение серы из атмосферы обеспечивает до 80 % потребности растений в данном элементе. В связи с этим вблизи промышленных центров, где атмосфера богата диоксидом серы, растения хорошо обеспечены серой. В удаленных районах количество сернистого ангидрида в осадках и атмосфере сильно снижается и питание растений серой зависит от ее наличия в почве.



Особенности жизни