«Давление тел, жидкостей и газов.

Организация: филиал МБОУ лицей с. Долгоруково в с. Жерновное

Населенный пункт: с. Жерновное

Повторительно - обобщающий урок по теме: «Давление жидкостей и газов».

Науку всё глубже постигнуть стремись,

Познанием вечного жаждой томись.

Лишь первых познаний

блеснет тебе свет.

Узнаешь: предела для знания нет.

Фирдоуси

Цели урока: повторить и проверить знания, полученные по изучению давления в жидкостях и газах, и знание физических формул, необходимых для решения задач;

Задачи урока:

Образовательная:

обобщить материал теме «Давление в жидкости и газах.», повторить основные понятия и законы, и закрепить основные умения по данной теме.

Развивающая задача:

расширяющего кругозор учащихся, о проявлении и использовании атмосферного давления в природе и быту, его влиянии на организм человека, обсуждение вопросов и решение задач, требующих творческой инициативы учащихся.

Воспитательная задача :

воспитание внимательности учащихся, умения работать в коллективе, формирование научного мировоззрения. Способствовать воспитанию взаимовыручки в классе.

1.Сообщение темы урока.

На сегоднешнем уроке мы с вами повторим как определяется давление в жидкостях и газах и какую роль эта физическая величина играет в нашей жизни.

Для того чтобы ответить на все поставленные вопросы, необходимо знать как же возникает давление в жидкостях и газах.

А в этом нам поможет 1ученик (ФИ)

Он нам расскажет что из себе представляет атмосфера нашей планеты.

(На экране появляется надпись названия доклада: « Атмосфера нашей планеты».)

Учитель. Если человек не чувствует это давление, для чего-же людям необходимо было знать о его существовании. И кто же впервые его

измерил?

это мы узнаем с вами из следующего сообщения которое нам подготовил(2 ученик.). а называется оно « История открытия атмосферного давления».

Учитель. Из сообщения узнали, о том что определять атмосферное давление могли уже давно.

А вот отчего зависит давление в жидкостях и газах, и знаете ли вы об этом, я выясню после того, как вы ответите на вопросы теста.(тест раздаю на карточках и ответы на экране.)

Уч.Ну что же от чего зависит давление вы знаете, а по какой формуле оно определяется? (ребята пишут формулу). А теперь используя формулу для определения давления решим задачу.(ученик решает на доске)

Задача 1.

Какое давление на дно канистры оказывает находящийся в ней машинное масло, если высота его слоя равна 50см? (плотность 900кг/м 3).

Дано: Решение

h =50cм 0.5м р=ρgh

ρ=900кг/м 3 р=900кг/м 3 *10н/кг*0,5м =4500Па

р -?

А как же изменяется давление в атмосфере?

Прежде, чем ответить на этот вопрос послушаем стихотворение « Айболит».

Вот как об этом говорится в известном стихотворении К. Чуковского.(На экране появляются строки стихотворения и картинка.) ученик читает стихотворение.

И горы встают перед ним на пути,

И он по горам начинает ползти.

А горы все выше, а горы все круче

А горы уходят под самые тучи

О если я не дойду,

Если в пути пропаду,

Что станет с ними, с больными с моими зверями лесными?

Уч.Что же мешало доктору преодолет горы?(ребята отвечают что с высотой атмосферное давление изменяется).

Давайте решим задачу (490Л)

У подножия горы барометр показывает 98642 Па, а на ее вершине 90317Па. Определите высоту горы.

Дано: Решение

р 1 =98642Па h=▲h (р 1 - р 2)/133

р 2 =90317Па h=12м*(98642Па -90317Па) /133 =750м

h -? Ответ: 750м.

А теперь решите самостоятельно задачу № 488.

Какой же вывод вы можете из решенных задач. (Из задач следует, что чем выше мы поднимаемся над поверхностью Земли, тем давление меньше,а чем ниже над поверхностью земли тем выше.)

А сейчас из сообщения» Роль атмосферного давления в жизни человека и животных.» мы узнаем как человек использует атмосферное давление в своей жизни.

Если вы внимательно слушали сообщение, то это вам поможет ответить на следующие вопросы. Объявляю « Аукцион по продаже пятерок». (На экране появляются вопросы и затем правильные ответы).

1. Если плотно приложить к губам кленовый лист и быстро втянуть воздух, то лист с треском разрывается. Почему? (При вдохе грудная клетка расширяется, и в полости рта создается разряжение. Снаружи на лист действует большая сила атмосферного давления.)

2.Если открыть кран в бочке наполненной водой и плотно закрытой крышкой. Которая не имеет более никаких, даже маленьких отверстий и щелей, то вода вскоре перестанет вытекать из крана. Почему?

3.Почему вода не выливается из стакана, частично наполненного водой, если его плотно закрыть бумагой и перевернуть вверх дном?

(ответ: после перевертывания стакана между дном и водой образуется разряженное пространство, поэтому вода удерживается в стакане силой атмосферного давления снаружи.)

4. Почему вода поднимается вверх, когда её втягивают через соломинку?

(при втягивании воды грудная клетка расширяется, и в полости рта создается разряжение, в то время как на поверхности воды действует сила атмосферного давления. Разность давлений заставляет воду подниматься по соломинке.)

5.Может ли космонавт набрать чернила в поршневую авторучку, находясь в корабле в состоянии невесомости?

(Да, может, если в корабле поддерживается нормальное атмосферное давление.)

Учитель. Как видно из этих вопросов, то многие физические явления мы можем объяснить зная о существовании атмосферного давления.

Но также зная об изменении давления, мы можем предсказать изменение погоды.

Нам об этом расскажет ученик №4 в своем сообщении « Предсказании погоды».

Учитель. Но еще издавна люди замечали, что поведение некоторых животных связано с изменением погоды. И появились много примет связанных с погодой. Давайте сейчас вспомним о них. (уч-ся по очереди называют эти приметы).

Учитель. Ученые, познавая механизмы живой природы, стремятся воссоздать их в виде приборов, точно отмечающих малейшие изменения окружающей среды. На основе этих наблюдений были созданы загадки связанные с физическими явлениями и приборами.А теперь немного отдахнем и отгадаем несколько загадок.

1.Есть невидимка;

В дом не просится

А прежде людей бежит

Торопится (воздух)

2.На стене висит тарелка,

По тарелке ходит стрелка

Эта стрелка наперед

Нам погоду узнает (барометр)

3.Через нос проходит в грудь

И обратный держит путь

Он невидимый, и все же

Без него мы жить не модем. (воздух)

4.Поднимаемся мы в гору

Стало трудно нам дышать

А какие есть приборы,

Чтоб давленье измерять (барометр).

Учитель. Давление возникающее в жидкостях игазах играет огромную роль в шашей жизни. Поэтому чтобы объяснить физические явления связанные с давление мы должны знать как её определить и с помощью каких приборов измерить.

Я думаю, что наш поможет вам ответить на многие вопросы связанные с атмосферным давлением.

Домашнее задание.

Рефлексия.

Дети, изобразите в виде рисунка какое настроение у вас создалось на уроке физики. Понравился ли вам урок?

Если - да, то нарисуйте улыбающуюся мордочку. Если – нет, то грустную.

Литература:

  1. Хрестоматия по физической географии.
  2. Т.П. Герасимова «География» 6кл. Учеб. для общеобразоват учеб. заведений. М.: Дрофа
  3. Большая энциклопедия природы « Вода и воздух»
  4. А.В. Владимиров « Рассказы об атмосферном давлении»
  5. С. Е Полянский « разработки по физике»
  6. Лукашик В. И. Сборник задач по физике: Учеб пособие для учащихся 7-8 кл. сред. шк.
  7. Перышкин А. В. Физика. 7кл.: Учеб. для общеобразоват учеб. заведений. М.: Дрофа, 2015
  8. Интернет ресурсы.

Приложение.

Тест –опрос

1.Как формулируется закон паскаля?

А)результат действия силы зависит не только от её модуля, но и от площади той поверхности, перпендикулярно которой она действует.

Б) давление газа на стенки сосуда по всем направлениям одинаково.

В) при уменьшении объема газа его давление увеличивается, а при увеличении объема уменьшается.

Г) Давление, производимое на жидкость или газ, передается без изменения в каждую точку жидкости или газа.

2. Какая из перечисленных ниже единиц принята за единицу давления?

А)Ньютон б) Ватт в) Паскаль г) килограмм.

3. какое давление оказывает на почву танк массой 40т, если поладь гусеницы равна 2м 2 .

А)10кПа б)20кПа в) 1000Па г) 2000Па.

4. при попадании пули в стекло в нем остается маленькое отверстие, а при попадании в аквариум с водой, стекло разбивается вдребезги. Почему?

А) в воде скорость пули уменьшается

Б) увеличение давления воды разрывает стекло во всех направлениях.

В) пуля изменяет траекторию движения в воде.

Г) за счет резкого торможения пули в воде.

5. Чему равна высота столба керосина в сосуде, если давление на дно сосуда равно 1600Па? Плотность керосина 800кг/м 3 .

А)2м б)20см в) 20м г) 2см

Ответы: 1г 2в 3б 4б 5а


Жидкости и газы передают по всем направлениям приложенное к ним давление. Об этом гласит закон Паскаля и практический опыт.

Но существует еще и собственный вес, который тоже должен влиять на давление, существующее в жидкостях и газах. Вес собственных частей или слоев. Верхние слои жидкости давят на средние, средние на нижние, а последние - на дно. То есть мы можем говорить о существовании давления столба покоящейся жидкости на дно.

Формула давления столба жидкости

Формула для расчета давления столба жидкости высотой h имеет следующий вид:

где ρ - плотность жидкости,
g - ускорение свободного падения,
h - высота столба жидкости.

Это формула так называемого гидростатического давления жидкости.

Давление столба жидкости и газа

Гидростатическое давление, то есть, давление, оказываемое покоящейся жидкостью, на любой глубине не зависит от формы сосуда, в котором находится жидкость. Одно и то же количество воды, находясь в разных сосудах, будет оказывать разное давление на дно. Благодаря этому можно создать огромное давление даже небольшим количеством воды.

Это очень убедительно продемонстрировал Паскаль в семнадцатом веке. В закрытую бочку, полную воды, он вставил очень длинную узкую трубку. Поднявшись на второй этаж, он вылил в эту трубку всего лишь одну кружку воды. Бочка лопнула. Вода в трубке из-за малой толщины поднялась до очень большой высоты, и давление выросло до таких значений, что бочка не выдержала. То же самое справедливо и для газов. Однако, масса газов обычно намного меньше массы жидкостей, поэтому давление в газах, обусловленное собственным весом можно часто не учитывать на практике. Но в ряде случаев приходится считаться с этим. Например, атмосферное давление, которое давит на все находящиеся на Земле предметы, имеет большое значение в некоторых производственных процессах.

Благодаря гидростатическому давлению воды могут плавать и не тонуть корабли, которые весят зачастую не сотни, а тысячи килограмм, так как вода давит на них, как бы выталкивая наружу. Но именно по причине того же гидростатического давления на большой глубине у нас закладывает уши, а на очень большую глубину нельзя спуститься без специальных приспособлений - водолазного костюма или батискафа. Лишь немногие морские и океанические обитатели приспособились жить в условиях сильного давления на большой глубине, но по той же причине они не могут существовать в верхних слоях воды и могут погибнуть, если попадут на небольшую глубину.

Жидкость в гидравлике рассматривают как сплошную среду без пустот и промежутков. Кроме того, не учитывают влияние отдельных молекул, то есть даже бесконечно малые частицы жидкости считают состоящими из весьма большого количества молекул.

Из курса физики известно, что вследствие текучести жидкости, т.е. подвижности ее частиц, она не воспринимает сосредоточенные силы. Поэтому в жидкости действуют только распределенные силы, причем эти силы могут распределяться по объему жидкости(массовые или объемные силы) или по поверхности (поверхностные силы).

Объемные (массовые) силы

К объемным (массовым) силам относятся силы тяжести и силы инерции. Они пропорциональны массе и подчиняются второму закону Ньютона.

Поверхностные силы

К поверхностным силам следует отнести силы, с которыми воздействуют на жидкость соседние объемы жидкости или тела, так как это воздействие осуществляется через поверхности. Рассмотрим их подробнее.

Пусть на плоскую поверхность площадью S под произвольным углом действует сила R

Силу R можно разложить на тангенциальную Т и нормальную F составляющие.

Сила трения

Тангенциальная составляющая называется силой трения Т и вызывает в жидкости касательные напряжения (или напряжения трения):

Единицей измерения касательных напряжений в системе СИ является Паскаль (Па) - ньютон, отнесенный к квадратному метру (1 Па = 1 Н/м 2).

Давление в жидкости

Нормальная сила F называется силой давления и вызывает в жидкости нормальные напряжения сжатия, которые определяются отношением:

Нормальные напряжения, возникающие в жидкости под действием внешних сил, называются гидромеханическим давлением или просто давлением.

Системы отсчета давления

Рассмотрим системы отсчета давления. Важным при решении практических задач является выбор системы отсчета давления (шкалы давления). За начало шкалы может быть принят абсолютный нуль давления. При отсчете давлений от этого нуля их называют абсолютными - P абс .

Однако, как показывает практика, технические задачи удобнее решать, используя избыточные давления P изб , т.е. когда за начало шкалы принимается атмосферное давление.

Давление, которое отсчитывается "вниз" от атмосферного нуля, называется давлением вакуума P вак , или вакуумом.

P абс = P атм + P изб

где P атм - атмосферное давление, измеренное барометром.

Связь между абсолютным давлением P абс и давлением вакуума P вак можно установить аналогичным путем:

P абс = P атм - P вак

И избыточное давление, и вакуум отсчитываются от одного нуля (P атм ), но в разные стороны.

Таким образом, абсолютное, избыточное и вакуумное давления связаны и позволяют пересчитать одно в другое.

Единицы измерения давления

Практика показала, что для решения технических (прикладных) задач наиболее удобно использовать избыточные давления. Основной единицей измерения давления в системе СИ является паскаль (Па), который равен давлению, возникающему при действии силы в 1 Н на площадь размером 1 м2 (1 Па = 1 Н/м2).

Однако чаще используются более крупные единицы: килопаскаль (1 кПа = 10 3 Па) и мегапаскаль (1 МПа = 10 6 Па).

В технике широкое распространение получила внесистемная единица - техническая атмосфера (ат), которая равна давлению, возникающему при действии силы в 1 кгс на площадь размером 1 см 2 (1 ат = 1 кгс/см 2).

Соотношения между наиболее используемыми единицами следующие:

10 ат = 0,981 МПа ≈ 1 МПа или 1 ат = 98,1 кПа ≈ 100 кПа.

В зарубежной литературе используется также единица измерения давления бар

(1 бар = 105 Па).

В каких ещё единицах измеряется давление, можно посмотреть

Рассмотрим некоторые свойства жидкостей, которые оказывают наиболее существенное влияние на происходящие в них процессы и поэтому учитываются при расчетах гидравлических систем.

Плотность и удельный вес

Важнейшими характеристиками механических свойств жидкости являются ее плотность и удельный вес. Они определяют "весомость" жидкости.

Под плотностью ρ (кг/м 3) понимают массу жидкости m , заключенную в единице ее объема V, т.е.

Вместо плотности в формулах может быть использован также удельный вес γ (Н/м 3), т.е. вес G = m⋅g, приходящийся на единицу объема V:

γ = G / V = m⋅g / V = ρ⋅g

Изменения плотности и удельного веса жидкости при изменении температуры и давления незначительны, и в большинстве случаев их не учитывают.

Плотности наиболее употребляемых жидкостей и газов (кг/м 3):

Вязкость

Вязкость - это способность жидкости сопротивляться сдвигу, т. е. свойство, обратное текучести (более вязкие жидкости являются менее текучими). Вязкость проявляется в возникновении касательных напряжений (напряжений трения).

Рассмотрим слоистое течение жидкости вдоль стенки (рисунок)

В этом случае происходит торможение потока жидкости, обусловленное ее вязкостью. Причем скорость движения жидкости в слое тем ниже, чем ближе он расположен к стенке. Согласно гипотезе Ньютона касательное напряжение, возникающее в слое жидкости на расстоянии у от стенки, определяется зависимостью:

Закон трения Ньютона

= μ⋅ dv
dy

где dv/dy - градиент скорости, характеризующий интенсивность нарастания скорости v при удалении от стенки (по оси у), μ ‑ динамическая вязкость жидкости.

Течения большинства жидкостей, используемых в гидравлических системах, подчиняются закону трения Ньютона, и их называют ньютоновскими жидкостями.

Однако следует иметь в виду, что существуют жидкости, в которых закон Ньютона в той или иной степени нарушается. Такие жидкости называют неньютоновскими.

Величина μ, входящая в формулу (динамическая вязкость жидкости), измеряется в Пас либо в пуазах 1 П = 0.1 Пас. Пуа́з (обозначение: П, до 1978 года пз; международное - P; от фр. poise) - единица динамической вязкости в системе единиц СГС. Один пуаз равен вязкости жидкости, оказывающей сопротивление силой в 1 дину взаимному перемещению двух слоев жидкости площадью 1 см², находящихся на расстоянии 1 см друг от друга и взаимно перемещающихся с относительной скоростью 1 см/с.

1 П = 1 г / (см·с) = 0,1 Н·с/м²

Единица названа в честь Ж. Л. М. Пуазёйля. Пуаз имеет аналог в системе СИ - паскаль-секунда (Па·c).

1 Па·c = 10 П

Вода при температуре 20 °C имеет вязкость 0,01002 П, или около 1 сантипуаза.

Однако на практике более широкое применение нашла

Кинематическая вязкость:

ν =   μ
ρ

Единицей измерения последней в системе СИ является м 2 /с или более мелкая единица - см 2 /с, которую принято называть стоксом, 1 Ст = 1 см 2 /с. Для измерения вязкости также используются сантистоксы: 1 сСт = 0,01 Ст.

Вязкость жидкостей существенно зависит от температуры, причем вязкость капельных жидкостей с повышением температуры падает, а вязкость газов - растет (см. рисунок).

Это объясняется тем, что в капельных жидкостях, где молекулы расположены близко друг к другу, вязкость обусловлена силами молекулярного сцепления. Эти силы с ростом температуры ослабевают, и вязкость падает. В газах молекулы располагаются значительно дальше друг от друга. Вязкость газа зависит от интенсивности хаотичного движения молекул. С ростом температуры эта интенсивность растет и вязкость газа увеличивается.

Вязкость жидкостей зависит также от давления, но это изменение незначительно, и в большинстве случаев его не учитывают.

Сжимаемость

Сжимаемость - это способность жидкости изменять свой объем под действием давления. Сжимаемость капельных жидкостей и газов существенно различается. Так, капельные жидкости при изменении давления изменяют свой объем крайне незначительно. Газы, наоборот, могут значительно сжиматься под действием давления и неограниченно расширяться при его отсутствии.

Для учета сжимаемости газов при различных условиях могут быть использованы уравнения состояния газа или зависимости для политропных процессов.

Сжимаемость капельных жидкостей характеризуется коэффициентом объемного сжатия β р (Па -1):

где dV - изменение объема под действием давления; dр - изменение давления; V - объем жидкости.

Знак "минус" в формуле обусловлен тем, что при увеличении давления объем жидкости уменьшается, т.е. положительное приращение давления вызывает отрицательное приращение объема.

При конечных приращениях давления и известном начальном объеме V 0 можно определить конечный объем жидкости:

V 1 = V 0 ·(1 - β р ·Δp)

а также ее плотность

Величина, обратная коэффициенту объемного сжатия β р, называется объемным модулем упругости жидкости (или модулем упругости ) К = 1/ β р (Па).

Эта величина входит в обобщенный закон Гука, связывающий изменение давления с изменением объема

ΔV = - Δp
v K

Модуль упругости капельных жидкостей изменяется при изменении температуры и давления. Однако в большинстве случаев K считают постоянной величиной, принимая за нее среднее значение в данном диапазоне температур или давлений.

Модули упругости некоторых жидкостей (МПа):

Температурное расширение

Способность жидкости изменять свой объем при изменении температуры называется температурным расширением. Оно характеризуется коэффициентом температурного расширения β t:

где dT- изменение температуры; dV- изменение объема под действием температуры; V - объем жидкости.

При конечных приращениях температуры:

V 1 = V 0 ·(1 + β t ·ΔT)

Как видно из формул, с увеличением температуры объем жидкости возрастает, а плотность уменьшается.

Коэффициент температурного расширения жидкостей зависит от давления и температуры:

То есть при разных условиях коэффициент температурного расширения изменился в 50 раз. Однако на практике обычно принимают среднее значение в данном диапазоне температур и давления.Например, для минеральных масел β t ≈ 800·10 -6 1/град.

Газы весьма значительно изменяют свой объем при изменении температуры. Для учета этого изменения используют уравнения состояния газов или формулы политропных процессов.

Испаряемость

Любая капельная жидкость способна изменять свое агрегатное состояние, в частности превращаться в пар. Это свойство капельных жидкостей называют испаряемостью. В гидравлике наибольшее значение имеет условие, при котором начинается интенсивное парообразование по всему объему - кипение жидкости.

Для начала процесса кипения должны быть созданы определенные условия (температура и давление). Например, дистиллированная вода закипает при нормальном атмосферном давлении и температуре 100°С. Однако это является частным случаем кипения воды. Та же вода может закипеть при другой температуре, если она будет находиться под воздействием другого давления, т. е. для каждого значения температуры жидкости, используемой в гидросистеме, существует свое давление, при котором она закипает.

Давление при котором жидкость закипает, называют давлением насыщенных паров (p н.п.).

Величина p н.п. всегда приводится как абсолютное давление и зависит от температуры.

Для примера на рисунке приведена зависимость давления насыщенных паров воды от температуры.

На графике выделена точка А, соответствующая температуре 100°С и нормальному атмосферному давлению р а. Если на свободной поверхности воды создать более высокое давление р 1 , то она закипит при более высокой температуре Т 1 (точка В на рисунке). И наоборот, при малом давлении р 2 вода закипает при более низкой температуре Т 2 (точка С).

Растворимость газов

Многие жидкости способны растворять в себе газы. Эта способность характеризуется количеством растворенного газа в единице объема жидкости, различается для разных жидкостей и изменяется с увеличением давления.

Относительный объем газа, растворенного в жидкости до ее полного насыщения, можно считать по закону Генри прямо пропорциональным давлению, то есть:

где V г - объем растворенного газа, приведенный к нормальным условиям (p 0 , Т 0);
V ж - объем жидкости;
k - коэффициент растворимости;
р - давление жидкости.

Коэффициент k имеет следующие значения при 20°С:

При понижении давления выделяется растворенный в жидкости газ, причем интенсивнее, чем растворяется в ней. Это явление может отрицательно сказывается на работе гидросистем.

По теме

“Давление в жидкости и газе”

Ученика 7 “Б” Класса

Средней школы №1

Лежнина Петра

Давление-величина, равная отношению силы, действующей перпендикулярно поверхности, к площади этой поверхности, называется давлением. За единицу давления принимается такое давление, ко­торое производит сила в 1Н, действующая на поверхность площадью 1м 2 перпендикулярно этой поверхности. Следовательно, чтобы определить давление, надо силу, действующую перпендикулярно поверхности, разделить на площадь поверхности: Известно, что молекулы газа беспорядочно движутся. При своем движении они сталкиваются друг с другом, а также со стенками сосуда, в котором находится газ. Молекул в газе много, потому и число их ударов очень велико. Например, число ударов молекул воздуха, находящегося в комнате, на поверхность площадью 1см 2 за 1 сек. выражается двадцатитрехзначным числом. Хотя сила удара отдельной молекулы мала, но действие всех молекул о стенки сосуда значительно, оно и создает давление газа.

Итак, давление газа на стенки сосуда (и на помещенное в газ тело) вызывается ударами молекул газа. Известно, что молекулы газа беспорядочно движутся. При своем движении они сталкиваются друг с другом, а также со стенками сосуда, в котором находится газ. Молекул в газе много, потому и число их ударов очень велико. Например, число ударов молекул воздуха, находящегося в комнате, на поверхность площадью 1 см 2 за 1 с выражается двадцатитрехзначным числом. Хотя сила удара отдельной молекулы мала, но действие всех молекул о стенки сосуда значительно, оно и создает дав­ление газа. Итак, давление газа на стенки сосуда (и на помещенное в газ тело) вызывается ударами молекул газа.

При уменьшении объема газа его давление уве­личивается, а при увеличении объема давление умень­шается при условии, что масса и температура газа остаются неизменными.

Давление, производимое на жидкость или газ, пере­дается без изменения в каждую точку объема жидкости или газа.(закон Паскаля).

На основе закона Паскаля легко объяснить следующие опыт.

На рисунке изображен полый шар, имеющий в различных местах узкие отверстия. К шару присоединена трубка, в которую вставлен поршень. Если набрать воды в шар и вдвинуть в трубку поршень, то вода польется из всех отверстий шара. В этом опыте поршень давит на поверхность воды в трубке. Частицы воды, находящиеся под поршнем, уплотняясь, передают его давление другим слоям, лежащим глубже. Таким образом, давление порш­ня передается в каждую точку жидкости, заполняющей шар. В результате часть воды выталкивается из шара в виде струек, вытекающих из всех отверстий.

Если шар заполнить дымом, то при вдвигании поршня в трубку из всех отверстий шара начнут выходить струйки дыма. Это подтверждает, (что и газы передают производимое на них давление во все стороны одинаково.)

Опустим трубку с резиновым дном, в которую налита вода, в другой, более широкий сосуд с водой. Мы увидим, что по мере опускания трубки резиновая пленка постепенно выпрямляется. Полное выпрямление пленки показывает, что силы, действующие на нее сверху и снизу, равны. Наступает полное выпрямление пленки тогда, когда уровни воды в трубке и сосуде совпадают.

Итак, опыт показывает, что внутри жидкости сущест­вует давление и на одном и том же уровне оно одинаково по всем направлениям. С глубиной давление увеличи­вается. Газы в этом отношении не отличаются от жид­костей.

Формула для расчета давления жидкости на дно сосуда. Из этой формулы видно, что давление жид­кости на дно сосуда зависит только от плотности и высоты столба жидкости.

Мембранный манометр. Как измерить давление жидкости на по­верхность твердого тела? Как изме­рить, например, давление воды на дно стакана? Конечно, дно стакана деформируется под действием сил дав­ления, и зная величину деформации, мы могли бы определить величину вызвавшей ее силы и рассчитать давле­ние; но эта деформация настолько ма­ла, что изменить ее непосоедственно практически невозможно. Так как судить по деформации дан­ного тела о давлении, оказываемом на него жидкостью, удоб­но лишь в том случае, когда деформации достаточно велики, то для практического определения давления жидкости пользуются специальными приборами - манометрами, вкоторых деформации имеют сравнительно большую, легко измеримую величину.

Простейший мембранный манометр устроен следующим образом. Тонкая упругая пластинка М - мем­брана - герметически закрывает пустую коробку K . К мем­бране присоединен указатель Р, вращающийся около оси О. При погружении прибора в жидкость мембрана прогибается под действием сил давления, и ее прогиб передается в уве­личенном виде указателю, передвигающемуся по шкале. Каждому положению указателя соответствует определенный прогиб мембраны, а следовательно, и определенная сила давления на мембрану. Зная площадь мембраны, можно от сил давления перейти к самим давлениям. Можно непо­средственно измерять давление, если заранее проградуировать манометр, т. е. определить, какому давлению соот­ветствует то или иное положение указателя на шкале. Для этого нужно подвергнуть манометр действию давлений, величина которых известна и, замечая положение стрелки указателя, проставить соответственные цифры на шкале прибора.

Воздушную оболочку, окружающую Землю, называют атмосферой (от греческих слов: атмос-пар, воздух и сфера-шар).

Атмосфера, как показали наблюдения за полетом ис­кусственных спутников Земли, простирается на высоту нескольких тысяч километров. Мы живем на дне огромного

воздушного океана. Поверхность Земли - дно этого океана.

Вследствие действия силы тяжести верхние слои воз­духа, подобно воде океана, сжимают нижние слои. Воз­душный слой, прилегающий непосредственно к Земле, сжат больше всего и согласно закону Паскаля передает производимое на него давление по всем направлениям.

В результате этого земная поверхность и тела, находя­щиеся на ней, испытывают давление всей толщи воздуха, или, как обычно говорят, испытывают атмосферное дав­ление.

В практике для измерения атмосферного давления используют металлический барометр, называемый ане­роидом (в переводе с греческого-без жидкостный. Так барометр называют потому,что он не содержит ртути).

Внешний вид анероида изображен на рисунке. Главная часть его - металлическая коробочка 1 с вол­нистой (гофрированной) поверхностью. Из этой коробочки выкачан воздух, а чтобы атмосферное давление не раздавило коробочку, ее крышку пружи­ной 2 оттягивают вверх. При увеличении атмосферного давления крышка прогибается вниз и натягивает пру­жину. При уменьшении давления пружина выпрямляет крышку. К пружине с помощью передаточного меха­низма 3 прикреплена стрелка-указатель 4, которая пере­двигается вправо или влево при изменении давления. Под стрелкой укреплена шкала, деления которой нане­сены по показаниям ртутного барометра. Так, число 750, против которого стоит стрелка анероида, показывает, что в данный момент в ртутном барометре высота ртутного столба 750 мм.

Следовательно, атмосферное давление равно 750 мм рт. ст., или » 1000 гПа.

Знание атмосферного давления весьма важно для предсказывания погоды на ближайшие дни, так как изменение атмосферного давления связано с изменением погоды. Барометр - необходимый прибор при метеороло­гических наблюдениях.

Список использованной литературы:

1. Учебники по Физике за 7-9 Классы.

2. Элементарный учебник Физики (том 1-2).

3. Справочник по Физики для школьников.

4. Интернет.(www.big-il.com)

Одним из важных параметров, который по-разному характеризует три основных состояния материи (газ, твердое тело и жидкость), является давление. В статье рассматриваются главные вопросы физики давления твердых тел, жидкостей и газов.

Три агрегатных состояния материи

Перед тем как перейти к вопросу давления в физике, дадим определение твердым, жидким и газообразным телам, которые являются основными способами существования материи на нашей планете.

Твердое тело практически не проявляет текучести, и этот факт характеризует основное отличие твердых тел от жидкостей и газов. Составляющие твердое тело частицы (молекулы, атомы) находятся в определенных пространственных положениях и меняют их очень редко. Именно поэтому всякое воздействие внешней силы на твердое тело приводит к возникновению противодействующих сил в нем, стремящихся сохранить форму и объем.

Жидкости и газы - это текучие состояния материи, то есть даже минимальное воздействие на них внешней силы приведет к изменению их формы. Как в жидкостях, так и в газах частицы, из которых они состоят, не имеют определенного места в пространстве и постоянно перескакивают из одних положений в другие. Отличаются между собой эти текучие состояния силой взаимодействия между их частицами. Так, в жидкостях сила взаимодействия между атомами и молекулами хотя и на порядок меньше таковой в твердом теле, но все же остается значимой, чтобы сохранять занимаемый жидкостью объем. Это означает, что жидкости являются практически несжимаемыми. В газах же силой взаимодействия между образующими их частицами можно пренебречь, поэтому газы всегда занимают сколь угодно большой объем, который находится в их распоряжении.

Отметим, что существует четвертое состояние вещества - плазма, которая по своим свойствам подобна газу, но отличается от него тем, что ее характеристики во многом определяются магнитными и электрическими эффектами. Бо́льшая часть вещества во Вселенной находится именно в состоянии плазмы.

Понятие о давлении в физике

Чтобы понять, что такое давление, сначала необходимо рассмотреть концепцию силы. Под силой в физике понимают интенсивность воздействия или взаимодействия между телами. Например, при формулировке второго закона Ньютона под силой понимают физическую величину любой природы, которая способна придавать телу конечной массы некоторое ускорение. В Международной системе единиц сила измеряется в ньютонах (Н). Сила в 1 Н способна менять скорость тела массой 1 кг на 1 м за каждую секунду.

Давление - это величина, которая определяется как перпендикулярная составляющая силы, относящаяся к поверхности с некоторой площадью, то есть:

P - давление, S - площадь, F - сила.

Измерение давления в физике осуществляют в паскалях (Па), 1 [Па] = 1 [Н]/ 1 [м 2 ].

Если сила F действует под некоторым углом к поверхности, тогда для расчета давления необходимо определить именно перпендикулярную составляющую силы к этой поверхности. Действующая по касательной к поверхности сила не создает никакого давления.

Твердые тела и давление

Поскольку для создания давления необходима сила и поверхность воздействия, то в случае твердых тел это невозможно, поскольку они находятся в равновесном состоянии. Действительно, каждая частица в твердом теле занимает определенное положение, а результирующая сила, которая действует на эту частицу со стороны ее окружения, равна нулю. Поэтому говоря о физике давления твердых тел, имеют в виду участие внешних объектов, с которыми взаимодействуют эти тела.

Например, если взять металлический брус и положить его на песок большей плоскостью, то он начнет создавать некоторое давление на поверхность песка. Теперь если этот же брус положить на песок меньшей плоскостью, тогда можно увидеть, что он погрузится в песок на некоторую глубину. Причиной этого явления будет разное давление, оказываемое металлическим брусом на песок в разных его положениях. Из формулы для давления P = F/S видно, что чем меньше площадь, тем большее давление создает твердое тело на поверхность опоры. В случае с брусом сила F оставалась постоянной во всех его положениях, и была равна весу бруса:

m и g - масса бруса и ускорение свободного падения, соответственно.

Давление в жидкостях

Поскольку газы и жидкости являются представителями текучей материи, то физика давления в жидкости и газе характеризуется тем, что оба состояния вещества в любом бесконечно малом их объеме оказывают во всех пространственных направлениях одинаковое давление. Однако если рассматриваемый объем будет иметь некоторые конечные размеры, то для жидкостей начнет играть роль сила тяжести, с которой верхние слои действуют на нижние. Эта сила приводит к понятию гидростатического давления.

В физике гидростатическое давление определяется как давление, с которым жидкость действует на погруженное в нее тело. Вычисляется это давление по формуле:

P = ρ × g × h, где

ρ и h - плотность жидкости и глубина, соответственно.

Давление в газообразных средах

Рассматривая газы, следует сказать, что давление в них связано исключительно с хаотическим движением атомов и молекул.

Предположим есть газ закрытый в некотором сосуде. Поскольку его частицы двигаются хаотически во всех направлениях одинаково, то достигнув стенок сосуда, они начнут ударяться о них, то есть создавать давление. Конечно же, удар одной частицы создаст очень маленькое давление, однако если учесть, что этих частиц много (порядка числа Авогадро N A = 6,02*10 23), и что движутся они с большими скоростями (порядка 1 000 м/с), то оказываемое давление на стенки сосуда приобретает заметные на практике значения.

В отличие от жидкостей, частицы газов не взаимодействуют друг с другом (приближение идеального газа), поэтому говорить о давлении верхних слоев газа на нижние нет никакого смысла.

От чего зависит величина давления в газе?

Зная природу появления давления в газах можно предположить, что если увеличить число ударов частиц о стенки сосуда, и увеличить силу этих ударов, тогда давление должно возрасти. В связи с этим определяют изменение давления в газе следующие факторы.

  • Концентрация частиц. Повысить ее можно путем уменьшения объема, который занимает газ. При постоянной температуре изменение объема будет обратно пропорционально сказываться на давлении.
  • Температура. Поскольку эта величина определяет кинетическую энергию газовых частиц, то ее увеличение при прочих постоянных параметрах системы приведет к повышению давления.

Давление земной атмосферы

Поскольку атмосфера нашей планеты представляет собой смесь газов (главным образом азота и кислорода), то физика атмосферного давления ничем не будет отличаться от физики описания этой величины для газов. Так, на поверхности Земли давление воздуха составляет 101 325 Па или 100 кПа, что соответствует давлению 760 мм ртутного столба.

С увеличением высоты концентрация молекул воздуха начинает уменьшаться, поскольку уменьшается земное притяжение, и уже на высоте горы Эверест (8 848 м), давление воздуха падает до 34 кПа, что составляет 1/3 от этого давления на уровне моря. Такое уменьшение атмосферного давления является серьезной угрозой для жизни человека.

Пример решения задачи

Любое решение задачи по физике на давление осуществляется с помощью формул и понятий, которые рассмотрены в статье. Приведем пример решения одной из таких задач.

Для практических целей атмосферное давление в физике принято выражать в миллиметрах ртутного столба. Какое давление в миллиметрах ртутного столба на вершине Эвереста?

Из приведенной выше информации известно, что на вершине самой высокой горы в мире давление воздуха составляет 34 кПа. Чтобы определить, какой высоты должен быть столб ртути, дабы он уравновесил это атмосферное давление, воспользуемся формулой для гидростатического давления:

P = ρ × g × h,

h = P / (ρ × g), где

ρ = 13 540 кг/м 3 - плотность ртути,

g = 9,81 м/c 2 .

Подставляя в формулу известные значения, получим:

h = 0,256 м = 256 мм.

Решить эту задачу можно было и другим способом. Зная, что вблизи поверхности планеты давление воздуха равно 101 кПа, и это соответствует давлению 760 мм столба ртути, получить высоту столба ртути на высоте Эвереста можно через простую пропорцию:

h = 34 × 760 / 101 = 256 мм.



Детская комната