Формулы сферической тригонометрии. Астрономия — Сферика и сферическая тригонометрия в древности и на средневековом востоке

Задачей сферической тригонометрии является решение сферического треугольника, то есть вычисление его неизвестных элементов через заданные (известные).

Известно, что для нахождения какого-либо угла или стороны треугольника необходимо, чтобы три любых других его элемента были известны (заданы).

Рассмотрим (без вывода) четыре основные теоремы сферической тригонометрии, устанавливающие необходимую аналитическую зависимость между элементами сферического треугольника.

I. Формула косинуса стороны.

Эта формула связывает между собой все три стороны и один из углов сферического треугольника. Для любого сочетания таких четырех элементов установлена зависимость, что...

«… косинус стороны сферического треугольника равняется произведению косинусов двух других сторон плюс произведение синусов тех же сторон на косинус угла между ними…».

Рис. 2.2. Сферический треугольник

Применительно к стороне а (рис. 2.2) сферического треугольника АВМ , руководствуясь теоремой косинуса стороны, можем записать:

cos a = cos b · cos m + sin b · sin m · cos A

Для сторон b и m зависимость между элементами треугольника выразится формулами:

Формула синусов применяется для вычисления одного из элементов, входящих в записанные равенства, если известны три других элемента.

III. Формула котангенсов связывает между собой четыре элемента сферического треугольника, лежащие рядом.

«… котангенс крайнего угла, умноженный на синус среднего, равняется произведению котангенса крайней стороны на синус средней без произведения косинусов средних элементов…».

АВМ (рис. 2.2) устанавливается зависимость между элементами А, m, В и а , то угол А и сторона а являются крайними, а угол В и сторона m – средними элементами, и тогда:

ctg A · sin B = ctg a · sin m - cos B · cos m

Всего для треугольника можно написать шесть таких соотношений, а именно:

Эти формулы удобны при вычислении угла по двум другим углам и стороне между ними, а также служат для нахождения стороны по трем заданным углам.

Рис. 2.3. Прямоугольный сферический треугольник

Решение прямоугольных треугольников проще, чем косоугольных, так как один из их элементов (угол 90°) всегда известен и для решения треугольника достаточно знать только два элемента.

То же самое относится и к четвертным треугольникам, в которых один из элементов (сторона 90°) всегда известен.

Если в сферическом треугольнике АВМ (рис. 2.3) заданы угол В = 90° , катет а и угол М , то для вычисления неизвестного угла А можно применить формулу косинуса угла (6.4) → cos A = sin B · sin M · cos a - cos B · cos M .

Если теперь заменить все функции угла В = 90° их значениями (sin B = 1, cos B = 0), то получим

cos A = sin M · cos a

2.3. Вычисление горизонтных координат светил по таблицам логарифмических функций мореходных таблиц «МТ-75»

При вычислении счислимой высоты (h С ) и азимута (А С ) светила по формулам сферической тригонометрии, как по натуральным значениям тригонометрических функций, так и по логарифмам, наиболее удобными являются формулы:

(2.6)

В формуле знак «~» означает, что при φ С и δ одноименных из большей величины вычитается меньшая, а при разноименных → величины φ С и δ складываются.

Значения , и табулированы так, что при вычислениях не нужно делить аргументы Z C , φ С ~δ и t M , а значения тригонометрических функций возводить в квадрат, → все эти действия выполнены в таблицах 5а (5б ) «МТ-75» (в «МТ-2000» таких таблиц нет).

Производить исследование формулы на знаки тригонометрических функций не требуется, так как оба члена ее правой части всегда положительны.



Методику вычисления горизонтных координат светил с помощью «МТ-75» рассмотрим на примере решения конкретной задачи.

Задача: Вычислить значения счислимых высоты (h C ) и азимута (А С ) светила, если:

φ С = 43°20,6′N ; δ = 17°36,7′N ; t M = 17°12,4′W .

Сферическая Тригонометрия в Энциклопедическом словаре:
Сферическая Тригонометрия - область математики, в которой изучаютсязависимости между сторонами и углами сферических треугольников (т. е.треугольников на поверхности сферы), образующихся при пересечении трехбольших кругов. Сферическая тригонометрия тесно связана со сферическойастрономией.

Определение «Сферическая Тригонометрия» по БСЭ:
Сферическая тригонометрия - математическая дисциплина, изучающая зависимости между углами и сторонами сферических треугольников (см. Сферическая геометрия). Пусть A, B, C - углы и a, b, c - противолежащие им стороны сферического треугольника ABC (см. рис.). Углы и стороны сферического треугольника связаны следующими основными формулами С. т.:


sin a
sin A
= sin b
sin B
= sin c
sin C
,
(1)

cos a = cos b cos c + sin b sin c cos A,
(2)

cos A = − cos B cos C + sin B sin C cos a,
(21)

sin a cos B = cos b sin c - sin b cos c cos A,
(3)

sin A cos b = cos B sin C + sin B cos C cos a;
(31)

в этих формулах стороны a, b, c измеряются соответствующими центральными углами, длины этих сторон равны соответственно aR, bR, cR, где R - радиус сферы. Меняя обозначения углов (и сторон) по правилу круговой перестановки:
A → B → C → A (a → b → c → a), можно написать другие формулы С. т., аналогичные указанным. Формулы С. т. позволяют по любым трём элементам сферического треугольника определить три остальные (решить треугольник).
Для прямоугольных сферических треугольников (A = 90°, a - гипотенуза, b, c - катеты) формулы С. т. упрощаются, например:


sin b = sin a sin В,
(1′)

cos a = cos b cos c,
(2′)

sin a cos B = cos b sin c.
(3′)

Для получения формул, связывающих элементы прямоугольного сферического треугольника, можно пользоваться следующим мнемоническим правилом (правилом Непера): если заменить катеты прямоугольного сферического треугольника их дополнениями и расположить элементы треугольника (исключая прямой угол A) по кругу в том порядке, в каком они находятся в треугольнике (то есть следующим образом: В, a, C, 90° - b, 90° - c), то косинус каждого элемента равен произведению синусов неприлежащих элементов, например,
cos a = sin (90° - с) sin (90° - b)
или, после преобразования,
cos а = cos b cos с (формула 2′).
При решении задач удобны следующие формулы Деламбра, связывающие все шесть элементов сферического треугольника:
sin 1⁄2a cos 1⁄2(B−C) = sin 1⁄2A sin 1⁄2(b+c)

sin 1⁄2a sin 1⁄2(B−C) = cos 1⁄2A sin 1⁄2(b−c)

cos 1⁄2a cos 1⁄2(B+C) = sin 1⁄2A cos 1⁄2(b+c)

cos 1⁄2a sin 1⁄2(B+C) = cos 1⁄2A cos 1⁄2(b−c)
При решении многих задач сферической астрономии, в зависимости от требуемой точности, часто оказывается достаточным использование приближённых формул: для малых сферических треугольников (то есть таких, стороны которых малы по сравнению с радиусом сферы) можно пользоваться формулами плоской тригонометрии; для узких сферических треугольников (то есть таких, у которых одна сторона, например а, мала по сравнению с другими) применяют следующие формулы:

(1′″)
a cos B ≈ c−b +
2
sinІ B
tg c
.
(3′″)

С. т. возникла значительно раньше плоской тригонометрии. Свойства прямоугольных сферических треугольников, выражаемые формулами (1)-(3), и различные случаи их решения были известны ещё греческим учёным Менелаю (1 в.) и Птолемею (2 в.). Решение косоугольных сферических треугольников греческие учёные сводили к решению прямоугольных. Азербайджанский учёный Насирэддин Туей (13 в.) систематически рассмотрел все случаи решения косоугольных сферических треугольников, впервые указав решение в двух труднейших случаях. Основные формулы косоугольных сферических треугольников были найдены арабским учёным Абу-ль-Вефа (10 в.) [формула (1)], немецким математиком И. Региомонтаном (середина 15 в.) [формулы типа (2)], французским математиком Ф. Виетом (2-я половина 16 в.) [формулы типа (21)] и Л. Эйлером (Россия, 18 в.) [формулы типа (3) и (31)]. Эйлер (1753 и 1779) дал всю систему формул С. т. Отдельные удобные для практики формулы С. т. были установлены шотландским математиком Дж. Непером (конец 16 - начало 17 вв.), английским математиком Г. Бригсом (конец 16 - начало 17 вв.), русским астрономом А. И. Лекселем (2-я половина 18 в.), французским астрономом Ж. Деламбром (конец 18 - начало 19 вв.) и др.
Лит. см. при ст. Сферическая геометрия.
Рис. к ст. Сферическая тригонометрия.

Для решения многих задач судовождения используются формулы сферической тригонометрии. На основе таких формул составляются, например, уравнения изолиний и градиентов некоторых навигационных параметров; задачи на определение места судна; определяются величины углов и сторон параллактического треугольника с целью получения координат места судна и поправки компаса методами мореходной астрономии и многого другого.

Задачей сферической тригонометрии является установление зависимостей между сторонами и углами сферического треугольника. Сферический треугольник считается заданным, если известны какие-либо три его элемента. Под решением треугольника понимают определение неизвестных его элементов. В большинстве случаев решение выполняется по так называемым основным формулам, к которым относятся:

· формула (теорема) косинуса стороны;

· формула (теорема) косинуса угла;

· формула (теорема) синусов;

· формула котангенсов, называемая так же формулой четырёх рядом лежащих элементов;

· формула пяти элементов.

В некоторых случаях возникает необходимость использования дополнительных формул, к которым относятся:

· формулы полупериметра;

· формулы Деламбра-Гаусса;

· аналогии (пропорции) Непера.

Эти группы формул имеют некоторые преимущества:

1) логарифмируются, поэтому не требуют применения таблиц сумм и разностей;

2) искомые углы получаются по самым выгодным функциям – тангенсам, т.е. дают наименьшие ошибки при вычислении угла;

3) выбор четверти искомых углов происходит уже в решении, следовательно, отпадает необходимость анализа формулы на знаки.

Формула косинуса стороны (теорема косинусов): в сферическом треугольнике косинус стороны равен произведению косинусов двух других сторон плюс произведение синусов этих сторон на косинус угла между ними.

Формула косинуса стороны связывает стороны и один из углов сферического треугольника. Всего этих формул три:

cos a = cos b cos c + sin b sin c cos A

cos b = cos a cos c + sin a sin c cos B (3.1)

cos c = cos a cos b + sin a sin b cos C

Формула косинуса угла (теорема косинусов для полярного треугольника): в сферическом треугольнике косинус угла равен отрицательному произведению косинусов двух других углов плюс произведение синусов этих углов на косинус стороны между ними.

Формула косинуса угла связывает углы и одну из сторон сферического треугольника. Всего этих формул так же три:

cos А = - cos B cos C + sin B sin C cos a

cos B = - cos A cos C + sin A sin C cos b (3.2)

cos C = - cos A cos B + sin A sin B cos c

Формула котангенсов (формула четырёх рядом лежащих элементов): произведение котангенса крайнего угла на синус среднего угла равно произведению котангенса крайней стороны на синус средней стороны минус произведение косинусов средних элементов.

Формула связывает четыре элемента лежащих подряд.

ctg A sin B = ctg a sin c – cos c cos B

ctg A sin C = ctg a sin b – cos b cos C

ctg B sin A = ctg b sin c – cos c cos A (3.3)

ctg B sin C = ctg b sin a – cos a cos C

ctg C sin A = ctg c sin b – cos b cos A

ctg C sin B = ctg c sin a – cos a cos B

Формула синусов (теорема синусов): в сферическом треугольнике синусы сторон пропорциональны синусам противолежащих углов.

Аналогии Непера:

(3.5)

По аналогиям Непера в сочетании с теоремой синусов обычно производится решение двух типов задач на косоугольный сферический треугольник – когда известны две стороны и противолежащий одной из них угол, или два угла и противолежащая одному из них сторона. Как уже указывалось выше, применение этих типов формул позволяет отыскивать неизвестные элементы без применения логарифмов сумм и разностей. Однако применение только этих двух групп формул приводит к необходимости при расчёте некоторых неизвестных элементов использовать ранее найденные элементы.

Чтобы не использовать ранее найденные элементы последних двух типов задач, можно воспользоваться следующим алгоритмами:

Когда известны две стороны и противолежащий одной из них угол, например a, b, A , вычисляются вспомогательные величины G и H :

ctg G = cos A tg b

tg H = tg A cos b

sin B = sin A sin b cosec a

sin (c-G) = cos a sec b sin G (3.6)

sin (C+H) = ctg a tg b sin H

Когда известны два угла и противолежащая одному из них сторона, вычисляют вспомогательные величины K и M:

ctg K = cos a tg B

tg M = tg a cos B

После чего вычисляются неизвестные величины по формулам:

sin b = sin a sin B cosec A

sin (C-K) = cos A sec B sin K (3.7)

sin (c+M) = ctg A tg B sin M

4)Формула косинуса стороны .

Системы координат

Система координат - комплекс определений, реализующий метод координат, то есть способ определять положение точки или тела с помощью чисел или других символов. Совокупность чисел, определяющий положение конкретной точки, называется координатами этой точки.В математике координаты - совокупность чисел, сопоставленных точкам многообразия в некоторой карте определённого атласа.В элементарной геометрии координаты - величины, определяющие положение точки на плоскости и в пространстве. На плоскости положение точки чаще всего определяется расстояниями от двух прямых (координатных осей), пересекающихся в одной точке (начале координат) под прямым углом; одна из координат называется ординатой, а другая - абсциссой. В пространстве по системе Декарта положение точки определяется расстояниями от трёх плоскостей координат, пересекающихся в одной точке под прямыми углами друг к другу, или сферическими координатами, где начало координат находится в центре сферы.В географии координаты - широта, долгота и высота над известным общим уровнем (например, океана). Смотри географические координаты.В астрономии координаты - величины, при помощи которых определяется положение звезды, например, прямое восхождение и склонение.Небесные координаты - числа, с помощью которых определяют положение светил и вспомогательных точек на небесной сфере. В астрономии употребляют различные системы небесных координат. Каждая из них по существу представляет собой систему полярных координат на сфере с соответствующим образом выбранным полюсом. Систему небесных координат задают большим кругом небесной сферы (или его полюсом, отстоящим на 90° от любой точки этого круга) с указанием на нём начальной точки отсчёта одной из координат. В зависимости от выбора этого круга системы небесных координат называлась горизонтальной, экваториальной, эклиптической и галактической.Наиболее используемая система координат - прямоугольная система координат (также известная как декартова система координат).Координаты на плоскости и в пространстве можно вводить бесконечным числом разных способов. Решая ту или иную математическую или физическую задачу методом координат, можно использовать различные координатные системы, выбирая ту из них, в которой задача решается проще или удобнее в данном конкретном случае.

11)Радиусы кривизны параллели, меридиана и нормального сечения .

Через произвольную точку на поверхности земного эллипсоида можно провести бесчисленное множество вертикальных плоскостей, которые образуют с поверхностью эллипсоида нормальные сечения. Два из них: меридианное и перпендикулярное ему сечение первого вертикала - носят название главных нормальных сечений. Кривизна поверхности земного эллипсоида в разных ее точках различна. Более того, в одной и той же точке все нормальные сечения имеют разную кривизну. Радиусы кривизны главных нормальных сечений в данной точке являются экстремальными, т. е. наибольшими и наименьшими среди всех остальных радиусов кривизны нормальных сечений. Величины радиусов кривизны меридиана М и первого вертикала N в данной широте φ определяются по формулам:M = a(1-e²) / (1 - e²*sin² φ) 3/2 ; N = a / (1 - e²*sin² φ) ½

Радиус кривизны r произвольной параллели эллипсоида связан с радиусом кривизны сечения первого вертикала соотношением r = N cos φ .Величины радиусов кривизны главных сечений эллипсоида М и N характеризуют его форму вблизи данной точки. Для произвольной точки поверхности эллипсоида отношение радиусов

M / N = 1 - e² / 1 - e²*sin² φ

12)Длина дуг параллели и меридианов .

L = 2pR = 2. 3,14 6371 »40000 км.

Определив длину большого круга, можно найти длину дуги меридиана (экватора) в 1° или в 1¢:1° дуги меридиана (экватора) = L/360°= 111 км,1¢ дуги меридиана (экватора) 111/60¢ = 1,853 км.Длина каждой параллели меньше длины экватора и зависит от широты места.

Она равна L пар= L экв соsj пар.Положение точки на поверхности земного эллипсоида может быть определено геодезическими координатами - геодезической широтой и геодезической долготой. Для определения положения точки на поверхности геоида используются астрономические координаты, получаемые путем математической обработки результатов астрономических измерений. Однако в ряде случаев, когда не нужно учитывать разности геодезических и астрономических координат, для определения положения точки в самолетовождении пользуются понятием географические координаты.Географической широтой j называется угол между плоскостью экватора и нормалью к поверхности эллипсоида в данной точке. Широта измеряется от плоскости экватора к полюсам от 0 до 90° к северу или югу. Северная широта считается положительной, южная - отрицательной.

13)Преобразование координат.

Преобразованием системы координат называется переход от одной системы координат к другой.При такой замене надо установить формулы, позволяющие по известным координатам точки в одной системе координат определить ее координаты в другой.

Главной целью преобразования координат является определение такой координатной системы, в которой уравнение данной линии становится наиболее простым. Удачным расположением координатных осей можно добиться того, чтобы уравнение кривой приняло наиболее простой вид. Это имеет важное значение для исследования свойств кривой.

14)Геодезическая линия. Прямая и обратная геодезическая задача .

Геодезическая линия, кривая, главные нормали всех точек которой совпадают с нормалями поверхности, на которой та расположена. Кратчайшее расстояние между двумя точками по поверхности - Г. линия, но не всегда обратно.Геодезическая задача, связана с определением взаимного положения точек земной поверхности и подразделяется на прямую и обратную задачу. Прямой Г. з. называют вычисление геодезических координат - широты и долготы некоторой точки, лежащей на земном эллипсоиде, по координатам др. точки и по длине и азимуту геодезической линии, соединяющей эти точки. Обратная Г. з. заключается в определении по геодезическим координатам двух точек на земном эллипсоиде длины и азимута геодезической линии между этими точками

15)Сближение меридианов.Сближение меридианов в некоторой точке земного эллипсоида - угол g s между касательной к меридиану этой точки и касательной к эллипсоиду, проведённой в той же точке параллельно плоскости некоторого начального меридиана. С. м. g s является функцией разности долгот l указанных меридианов, широты В точки и параметров эллипсоида. Приближённо С. м. выражается формулой g s = lsin В. С. м. на плоскости геодезической проекции, или картографической проекции (или гауссово С. м.) - это угол g, который образует касательная к изображению какого-либо меридиана с первой координатной осью (абсцисс) данной проекции, являющейся обычно изображением среднего (осевого) меридиана отображаемой территории.

16)Общий принцип изображения поверхностей развёртыванием .

РАзвертыванием одной поверхности на другую при помощи изгибания называется такое преобразование первой поверхности, при котором сохраняются элементы её внутренней геометрии.т.е углы. ПЛОЩАДИ, гАУССОВА кривизна поверхности, а так св-во кратчайших линий оставаться кратчайшими.Радиусы кривизны гл. нормальных сечений называются гл. радиусами кривизны в данной точке поверхности..R=1/R1*R2- гауссовая кривизна поверхности

Элементы сферической тригонометрии

Сферическая тригонометрия занимается изучением соотношений между сторонами и углами сферических треугольников (например, на поверхности Земли и на небесной сфере).Сферические треугольники. На поверхности шара кратчайшее расстояние между двумя точками измеряется вдоль окружности большого круга, т. е. окружности, плоскость которой проходит через центр шара. Вершины сферического треугольника являются точками пересечения трех лучей, выходящих из центра шара и сферической поверхности. Сторонами a, b, c сферического треугольника называют те углы между лучами, которые меньше 180 (если один из этих углов равен 180, то сферический треугольник вырождается в полуокружность большого круга). Каждой стороне треугольника соответствует дуга большого круга на поверхности шара (см. рисунок).

Углы A, B, C сферического треугольника, противолежащие сторонам a, b, c соответственно, представляют собой, по определению, меньшие, чем 180, углы между дугами больших кругов, соответствующими сторонам треугольника, или углы между плоскостями, определяемыми данными лучами.Геометрия на поверхности шара является неевклидовой; в каждом сферическом треугольнике сумма сторон заключена между 0 и 360, сумма углов заключена между 180 и 540. В каждом сферическом треугольнике против большей стороны лежит больший угол. Сумма любых двух сторон больше третьей стороны, сумма любых двух углов меньше, чем 180 плюс третий угол.Сферический треугольник единственным образом определяется (с точностью до преобразования симметрии):1) тремя сторонами, 2) тремя углами, 3) двумя сторонами и заключенным между ними углом, 4) стороной и двумя прилежащими к ней углами.

4)Формула косинуса стороны .

Формула косинуса стороны связывает три стороны и один из углов сферического треугольника. Удобна для нахождения неизвестного угла или стороны, противолежащей этому углу, и читается следующим образом: «в сферическом треугольнике косинус стороны равен произведению косину­сов двух других сторон плюс произведение синусов этих сторон на косинус угла между ними»



Детская комната