Как образуются катионы и анионы. Минерал нейтрализует отрицательные эмоции

Наверняка, каждому из читателей доводилось слышать такие слова, как «плазма», а также «катионы и анионы», это довольно интересная тема для изучения, которая в последнее время довольно прочно вошла в повседневную жизнь. Так, в быту широкое распространение получили так называемые плазменные дисплеи, которые прочно заняли свою нишу в различных цифровых устройствах – начиная от телефонов и заканчивая телевизорами. Но что такое плазма, и какое применение она находит в современном мире? Давайте попробуем ответить на этот вопрос.

Еще с малых лет, в начальной школе рассказывали о том, что существует три состояния вещества: твердое, жидкое, а также газообразное. Повседневный опыт показывает, что это действительно так. Мы можем взять немного льда, растопить его, а затем испарить – все довольно логично.

Важно! Существует четвертое базовое состояние вещества, называемое плазмой.

Однако, прежде чем ответить на вопрос: что же это такое, давайте вспомним школьный курс физики и рассмотрим строение атома.

В 1911 году физиком Эрнстом Резерфордом, после долгих исследований, была предложена так называемая планетарная модель атома. Что же она собой представляет?

По результатам его опытов с альфа-частицами, стало известно, что атом является неким аналогом солнечной системы, где уже ранее известные электроны играли роль «планет», вращаясь вокруг атомного ядра.

Данная теория стала одним из наиболее значимых открытий в физике элементарных частиц. Но на сегодняшний день она признана устаревшей, а ей на замену принята другая, более совершенная, предложенная Нильсом Бором. Еще позднее, с появлением нового ответвления науки, так называемой квантовой физики, была принята теория корпускулярно-волнового дуализма.

В соответствие с ней, большинство частиц одновременно являются не только частицами, но и электромагнитной волной. Таким образом, невозможно на 100% точно указать, в каком месте находится электрон в определенный момент. Имеется возможность лишь предположить, где он может быть. Подобные «допустимые» границы впоследствии получили название орбиталей.

Как известно, электрон обладает отрицательным зарядом, в то время как протоны, находящиеся в ядре, – положительным. Так как число электронов и протонов равно, то атом обладает нулевым зарядом, или же, – электрически нейтрален.

При различных внешних воздействиях атом получает возможность, как терять электроны, так и приобретать их, при этом меняя свой заряд на положительный или отрицательный, становясь при этом ионом. Таким образом, ионы представляют собой частицы с ненулевым зарядом – будь то ядра атомов, или оторванные электроны. В зависимости от заряда, положительного или отрицательного, ионы называются катионами и анионами соответственно.

Какие воздействия могут привести к ионизации вещества? К примеру, этого можно добиться с помощью нагрева. Однако в лабораторных условиях сделать это практически невозможно – оборудование не выдержит таких высоких температур.

Другой не менее интересный эффект можно наблюдать в космических туманностях. Подобные объекты чаще всего состоят из газа. Если поблизости имеется звезда, то ее излучение может ионизировать вещество туманности, в результате чего оно уже самостоятельно начинает излучать свет.

Глядя на эти примеры, можно ответить на вопрос о том, чем является плазма. Итак, ионизируя определенный объем вещества, мы заставляем атомы отдать свои электроны и приобрести положительный заряд. Свободные электроны, обладая отрицательным зарядом, могут либо остаться свободными, либо же присоединиться к другому атому, тем самым изменив его заряд на положительный. Так вещество никуда не уходит, а число протонов и электронов так и остается равным, оставляя плазму электрически нейтральной.

Роль ионизации в химии


Можно с уверенностью сказать, что химия – это, по сути, прикладная физика. И хотя данные науки занимаются изучением совершенно разных вопросов, но законы взаимодействия вещества в химии никто не отменял.

Как было описано выше, электроны имеют свои строго определенные места – орбитали. Когда атомы образуют какое-либо вещество, то они, сливаясь в группу, также «делятся» своими электронами с соседями. И хотя молекула остается электрически нейтральной, одна ее часть может представлять собой анион, а другая — катион.

За примером далеко ходить не требуется. Для наглядности можно взять всем известную соляную кислоту, она же хлороводород – HCL. Водород в данном случае будет обладать положительным зарядом. Хлор же в данном соединении является остатком и называется хлоридом – тут он имеет заряд отрицательный.

На заметку! Довольно легко выяснить какими свойствами обладают те или иные анионы.

Таблица растворимости покажет, какое вещество хорошо растворяется, а какое сразу же вступает во взаимодействие с водой.

Полезное видео: катионы и анионы

Вывод

Мы выяснили, что представляет собой ионизированное вещество, каким законам подчиняется, и какие процессы за этим стоят.

В волшебном мире химии возможно любое превращение. Например, можно получить безопасное вещество, которым часто пользуются в быту, из нескольких опасных. Подобное взаимодействие элементов, в результате которого получается однородная система, в которой все вещества, вступающие в реакцию, распадаются на молекулы, атомы и ионы, называется растворимость. Для того чтобы разобраться с механизмом взаимодействия веществ, стоит обратить внимание на таблицу растворимости .

Таблица, в которой показана степень растворимости, является одним из пособий для изучения химии. Те, кто постигают науку, не всегда могут запомнить, как определённые вещества растворяются, поэтому под рукой всегда следует иметь таблицу.

Она помогает при решении химических уравнений, где участвуют ионные реакции. Если результатом будет получение нерастворимого вещества, то реакция возможна. Существует несколько вариантов:

  • Вещество хорошо растворяется;
  • Малорастворимо;
  • Практически не растворяется;
  • Нерастворимо;
  • Гидрализуется и не существует в контакте с водой;
  • Не существует.

Электролиты

Это растворы или сплавы, проводящие электрический ток. Электропроводность их объясняется мобильностью ионов. Электролиты можно поделить на 2 группы :

  1. Сильные. Растворяются полностью, независимо от степени концентрации раствора.
  2. Слабые. Диссоциация проходит частично, зависит от концентрации. Уменьшается при большой концентрации.

Во время растворения электролиты диссоциируют на имеющие разный заряд ионы: положительные и отрицательные. При воздействии тока положительные ионы направляются в сторону катода, тогда как отрицательные в сторону анода. Катод – положительный заряд, анод – отрицательный. В итоге происходит движение ионов.

Одновременно с диссоциацией проходит противоположный процесс – соединение ионов в молекулы. Кислоты – это такие электролиты, при распаде которых образуется катион – ион водорода. Основания – анионы – это гидроксид ионы. Щелочи – это основания, которые растворяются в воде. Электролиты, которые способны образовывать и катионы и анионы, называются амфотерными.

Ионы

Это такая частица, в которой больше протонов или электронов, он будет называться анион или катион, в зависимости от того, чего больше: протонов или электронов. В качестве самостоятельных частиц они встречаются во многих агрегатных состояниях: газах, жидкостях, кристаллах и в плазме. Понятие и название ввёл в обиход Майкл Фарадей в 1834 году. Он изучал воздействие электричества на растворы кислот, щелочей и солей.

Простые ионы несут на себе ядро и электроны. Ядро составляет почти всю атомную массу и состоит из протонов и нейтронов. Количество протонов совпадает с порядковым номером атома в периодической системе и зарядом ядра. Ион не имеет определённых границ из-за волнового движения электронов, поэтому невозможно измерить их размеры.

Отрыв электрона от атома требует, в свою очередь, затрат энергии. Она называется энергия ионизации. Когда присоединяется электрон, происходит выделение энергии.

Катионы

Это частицы, носящие положительный заряд. Могут иметь разную величину заряда, например: Са2+ – двузарядный катион, Na+ – однозарядный катион. Мигрируют к отрицательному катоду в электрическом поле.

Анионы

Это элементы, имеющие отрицательный заряд. А также обладает различным количеством величины зарядов, например, CL- – однозарядный ион, SO42- – двухзарядный ион. Такие элементы входят в состав веществ, обладающих ионной кристаллической решёткой, в поваренной соли и многих органических соединениях.

  • Натр​ий . Щелочной металл. Отдав один электрон, находящийся на внешнем энергетическом уровне, атом превратится в положительный катион.
  • Хлор . Атом этого элемента принимает на последний энергетический уровень один электрон, он превратится в отрицательный хлорид анион.
  • Поваренная соль . Атом натрия отдаёт электрон хлору, вследствие этого в кристаллической решётке катион натрия окружён шестью анионами хлора и наоборот. В результате такой реакции образуется катион натрия и анион хлора. Благодаря взаимному притяжению формируется хлорид натрия. Между ними образуется прочная ионная связь. Соли – это кристаллические соединения с ионной связью.
  • Кислотный остаток . Это отрицательно заряженный ион, находящийся в сложном неорганическом соединении. Он встречается в формулах кислот и солей, стоит обычно после катиона. Практически для всех таких остатков есть своя кислота, например, SO4 – от серной кислоты. Кислот некоторых остатков не существует, и их записывают формально, но они образуют соли: фосфит ион.

Химия – наука, где возможно творить практически любые чудеса.

Химия - "волшебная" наука. А где вы еще получите безопасное вещество, соединив два опасных? Речь идет об обыкновенной поваренной соли - NaCl . Рассмотрим подробнее каждый элемент, опираясь на ранее полученные знания об устройстве атома.

Натрий - Na , щелочной металл (группа IA).
Электронная конфигурация: 1s 2 2s 2 2p 6 3s 1

Как видим, натрий имеет один валентный электрон, который он "согласен" отдать, чтобы его энергетические уровни стали завершенными.

Хлор - Cl , галоген (группа VIIA).
Электронная конфигурация: 1s 2 2s 2 2p 6 3s 2 3p 5

Как видим, хлор имеет 7 валентных электронов и ему "не хватает" одного электрона, чтобы его энергетические уровни стали завершенными.

Теперь догадываетесь, почему так "дружны" атомы хлора и натрия?

Ранее говорилось, что полностью "укомплектованные" энергетические уровни имеют инертные газы (группа VIIIA) - у них полностью заполнены внешние s и p-орбитали. Отсюда они так плохо вступают в химические реакции с другими элементами (им просто не надо ни с кем "дружить", поскольку ни отдавать, ни принимать электроны они "не хотят").

Когда валентный энергетический уровень заполнен - элемент становится стабильным или насыщенным .

Инертным газам "повезло", а что же делать остальным элементам периодической таблицы? Конечно же, "искать" себе пару, подобно дверному замку и ключу - определенному замку соответствует свой ключ. Так и химические элементы, пытаясь заполнить свой внешний энергетический уровень, вступают с другими элементами в реакции, создавая устойчивые соединения. Т.к. заполняются внешние s (2 электрона) и р (6 электронов) орбитали, то данный процесс получил название "правило октета" (октет = 8)

Натрий: Na

На внешнем энергетическом уровне атома натрия находится один электрон. Для перехода в стабильное состояние, натрий должен: либо отдать этот электрон, либо принять семь новых. Исходя из вышесказанного, натрий будет отдавать электрон. При этом у него "исчезает" 3s-орбиталь, а количество протонов (11) будет на один превосходить количество электронов (10). Поэтому, нейтральный атом натрия превратится в положительно заряженный ион - катион .

Электронная конфигурация катиона натрия: Na + 1s 2 2s 2 2p 6

Особо внимательные читатели справедливо скажут, что такая же электронная конфигурация и у неона (Ne). Так что же, натрий превратился в неон? Вовсе нет - не забывайте о протонах! Их по-прежнему; у натрия - 11; у неона - 10. Говорят, что катион натрия является изоэлектронным неону (поскольку их электронные конфигурации одинаковы).

Подведем итог:

  • атом натрия и его катион отличаются одним электроном;
  • катион натрия имеет меньший размер, поскольку он теряет внешний энергетический уровень.

Хлор: Cl

У хлора ситуация прямо противоположная - на внешнем энергетическом уровне у него находится семь валентных электронов и ему надо принять один электрон, чтобы стать стабильным. При этом произойдут следующие процессы:

  • атом хлора примет один электрон и станет отрицательно заряженным анионом (17 протонов и 18 электронов);
  • электронная конфигурация хлора: Cl - 1s 2 2s 2 2p 6 3s 2 3p 6
  • анион хлора является изоэлектронным аргону (Ar);
  • поскольку внешний энергетический уровень хлора "достроился", то радиус катиона хлора будет немного больше, чем у "чистого" атома хлора.

Поваренная соль (хлорид натрия): NaCl

Исходя из вышесказанного, видно, что электрон, который отдает натрий, становится электроном, который получает хлор.

В кристаллической решетке хлорида натрия каждый катион натрия окружен шестью анионами хлора. И наоборот, каждый анион хлора окружен шестью катионами натрия.

В результате перемещения электрона образуются ионы: катион натрия (Na +) и анион хлора (Cl -). Поскольку противоположные заряды притягиваются, то образуется устойчивое соединение NaCl (хлорид натрия) - поваренная соль .

В результате взаимного притяжения противоположно заряженных ионов, образуется ионная связь - устойчивое химическое соединение.

Соединения с ионными связями называют солями . В твердом состоянии все ионные соединения являются кристаллическими веществами.

Следует понимать, что понятие ионной связи довольно относительно, строго говоря к "чистым" ионным соединениям можно отнести только те вещества, у которых разность в электроотрицателности атомов, которые образуют ионную связь, равна или более 3. По этой причине в природе существует всего с десяток чисто ионных соединений - это фториды щелочных и щелочно-земельных металлов (например, LiF; относительная электроотрицательность Li=1; F=4).

Чтобы не "обижать" ионные соединения, химики договорились считать, что химическая связь является ионной, если разность электроотрицательностей атомов, образующих молекулу вещества равна или более 2. (см. понятие электроотрицательности).

Катионы и анионы

Другие соли образуются по аналогичному принципу, что и хлорид натрия. Металл отдает электроны, а неметалл их получает. Из периодической таблицы видно, что:

  • элементы группы IA (щелочные металлы) отдают один электрон и образуют катион с зарядом 1 + ;
  • элементы группы IIA (щелочноземельные металлы) отдают два электрона и образуют катион с зарядом 2 + ;
  • элементы группы IIIA отдают три электрона и образуют катион с зарядом 3 + ;
  • элементы группы VIIA (галогены) принимают один электрон и образуют анион с зарядом 1 - ;
  • элементы группы VIA принимают два электрона и образуют анион с зарядом 2 - ;
  • элементы группы VA принимают три электрона и образуют анион с зарядом 3 - ;

Распространенные одноатомные катионы

Распространенные одноатомные анионы

Не все так просто с переходными металлами (группа В), которые могут отдавать разное количество электронов, образуя при этом по два (и более) катиона, имеющих разные заряды. Например:

  • Cr 2+ - ион двухвалентного хрома; хром (II)
  • Mn 3+ - ион трехвалентного марганца; марганец (III)
  • Hg 2 2+ - ион двухатомной двухвалентной ртути; ртуть (I)
  • Pb 4+ - ион четырехвалентного свинца; свинец (IV)

Многие ионы переходных металлов могут иметь разную степень окисления.

Ионы не всегда бывают одноатомными, они могут состоять из группы атомов - многоатомные ионы . Например, ион двухатомной двухвалентной ртути Hg 2 2+ : два атома ртути связаны в один ион и имеют общий заряд 2 + (каждый катион имеет заряд 1 +).

Примеры многоатомных ионов:

  • SO 4 2- - сульфат
  • SO 3 2- - сульфит
  • NO 3 - - нитрат
  • NO 2 - - нитрит
  • NH 4 + - аммоний
  • PO 4 3+ - фосфат

Электроли́т - вещество , которое проводит электрический ток вследствие диссоциации на ионы , что происходит врастворах и расплавах , или движения ионов в кристаллических решётках твёрдых электролитов . Примерами электролитов могут служить водные растворы кислот , солей и оснований и некоторые кристаллы (например, иодид серебра , диоксид циркония ). Электролиты - проводники второго рода, вещества, электропроводность которых обусловлена подвижностью ионов.

Исходя из степени диссоциации все электролиты делятся на две группы

Сильные электролиты - электролиты, степень диссоциации которых в растворах равна единице (то есть диссоциируют полностью) и не зависит от концентрации раствора. Сюда относятся подавляющее большинство солей, щелочей, а также некоторые кислоты (сильные кислоты, такие как: HCl, HBr, HI, HNO 3, H 2 SO 4).

Слабые электролиты - степень диссоциации меньше единицы (то есть диссоциируют не полностью) и уменьшается с ростом концентрации. К ним относятводу, ряд кислот (слабые кислоты, такие как HF), основанияp-, d-, и f-элементов.

Между этими двумя группами чёткой границы нет, одно и то же вещество может в одном растворителе проявлять свойства сильного электролита, а в другом - слабого.

Изотонический коэффициент (также фактор Вант-Гоффа ; обозначается i ) - безразмерный параметр, характеризующий поведение вещества в растворе. Он численно равен отношению значения некоторого коллигативного свойства раствора данного вещества и значения того же коллигативного свойства неэлектролита той же концентрации при неизменных прочих параметрах системы.

Основные положения теории электролитической диссоциации

1. Электролиты при растворении в воде распадаются (диссоциируют) на ионы – положительные и отрицательные.

2. Под действием электрического тока ионы приобретают направленное движение: положительно заряженные частицы движутся к катоду, отрицательно заряженные – к аноду. Поэтому положительно заряженные частицы называются катионами, а отрицательно заряженные – анионами.

3. Направленное движение происходит в результате притяжения их противоположно заряженными электродами (катод заряжен отрицательно, а анод – положительно).

4. Ионизация – обратимый процесс: параллельно с распадом молекул на ионы (диссоциация) протекает процесс соединения ионов в молекулы (ассоциация).

Основываясь на теории электролитической диссоциации, можно дать следующие определения для основных классов соединений:

Кислотами называются электролиты, при диссоциации которых в качестве катионов образуются только ионы водорода. Например,

HCl → H + + Cl - ; CH 3 COOH H + + CH 3 COO - .

Основность кислоты определяется числом катионов водорода, которые образуются при диссоциации. Так, HCl, HNO 3 – одноосновные кислоты, H 2 SO 4 , H 2 CO 3 – двухосновные, H 3 PO 4 , H 3 AsO 4 – трехосновные.

Основаниями называют электролиты, при диссоциации которых в качестве анионов образуются только гидроксид-ионы. Например,

KOH → K + + OH - , NH 4 OH NH 4 + + OH - .

Растворимые в воде основания называются щелочами.

Кислотность основания определяется числом его гидроксильных групп. Например, KOH, NaOH – однокислотные основания, Ca(OH) 2 – двухкислотное, Sn(OH) 4 – четырехкислотное и т.д.

Солями называют электролиты, при диссоциации которых образуются катионы металлов (а также ион NH 4 +) и анионы кислотных остатков. Например,

CaCl 2 → Ca 2+ + 2Cl - , NaF → Na + + F - .

Электролиты, при диссоциации которых одновременно, в зависимости от условий, могут образовываться и катионы водорода, и анионы – гидроксид-ионы называются амфотерными. Например,

H 2 O H + + OH - , Zn(OH) 2 Zn 2+ + 2OH - , Zn(OH) 2 2H + + ZnO 2 2- или Zn(OH) 2 + 2H 2 O 2- + 2H + .

Катио́н - положительно заряженный ион . Характеризуется величиной положительного электрического заряда: например, NH 4 + - однозарядный катион, Ca 2+

Двузарядный катион. В электрическом поле катионы перемещаются к отрицательному электроду - катод

Происходит от греческого καθιών «нисходящий, идущий вниз». Термин введен Майклом Фарадеем в 1834 году .

Анио́н - атом , или молекула , электрический заряд которой отрицателен, что обусловлено избытком электронов по сравнению с количеством положительныхэлементарных зарядов . Таким образом, анион - отрицательно заряженный ион . Заряд аниона дискретен и выражается в единицах элементарного отрицательного электрического заряда; например, Cl − - однозарядный анион, а остаток серной кислоты SO 4 2− - двузарядный анион. Анионы имеются в растворах большинствасолей , кислот и оснований , в газах , например, H − , а также в кристаллических решётках соединений с ионной связью , например, в кристаллах поваренной соли , вионных жидкостях и в расплавах многих неорганических веществ .

Катионы и анионы выполняют в организме важные функции, например:

Ответственны за осмоляльность жидкости тела,

Образуют биоэлектрический мембранный потенциал,

Катализируют процесс обмена веществ,

Определяют действительную реакцию (рН) жидкости тела,

Стабилизируют определенные ткани (костную ткань),

Служат в качестве энергетического депо (фосфаты),

Участвуют в свертывающей системе крови.

В организме человека массой 70 кг содержится приблизительно 100 г натрия (60 мэкв/кг), 67% его активно обменивается (Geigy). Половина натрия организма находится во внеклеточном пространстве. Треть располагается в костях и хрящах. Содержание натрия в клетках мало (см. также рис. 6).

Концентрация в плазме: 142(137-147) мэкв/л

Основная роль

Основная ответственность за осмоляльность внеклеточного пространства. 92% всех катионов и 46% всех внеклеточных осмотически активных частиц составляют ионы натрия.

Концентрация натрия может определять осмоляльность плазмы, за исключением таких патологических процессов, как сахарный диабет, уремия (см. 1.1.2).

Величина внеклеточного пространства зависит от содержания натрия.

При бессолевых диетах или применении салуретиков внеклеточное пространство уменьшается; оно увеличивается при усиленном введении натрия.

Влияние на внутриклеточное пространство через содержание натрия в плазме. При повышении внеклеточной осмоляльности, например при введении гипертонического раствора поваренной соли, вода выводится из клеток, при снижении осмоляльности плазмы, например при потере соли, клетки обводняются.

Участие в создании биоэлектрического мембранного потенциала. Калий

В организме человека массой 70 кг содержится приблизительно 150 г калия (54 мэкв/кг), 90% его активно участвует в обмене (Geigy); 98% калия организма находится в клетках и 2% - внеклеточно (Fleischer, Frohlich). В мускулатуре определяется 70% общего содержания калия (Black).

Концентрация калия не во всех клетках одинакова. Мышечные клетки содержат 160 мэкв калия/кг воды (Geigy), эритроциты располагают только 87 мэкв/кг эритроцитной массы (Burck, 1970).

Концентрация калия в плазме: 4,5 (3,8-4,7) мэкв 1 л.

Основная роль

Участвует в утилизации углеводов;

Необходим для синтеза белков; при расщеплении белков калий

освобождается; при синтезе связывается (соотношение: 1 г азота приблизительно на 3 мэкв калия);

Оказывает важное влияние на нервно-мышечное возбуждение.

Каждая клетка мышц и нервное волокно в состоянии покоя представляют собой калиевую батарею, заряд которой в значительной степени определяется соотношением концентраций калия внутри и вне клеток. Процесс возбуждения связан с активным включением внеклеточных ионов натрия во внутренние волокна и медленным выходам внутриклеточного калия из волокон.

Препараты обусловливают вывод внутриклеточного калия. Состояния, связанные с низким содержанием калия, сопровождаются выраженным действием препаратов дигиталиса. При хроническом недостатке калия нарушается тубулярная реабсорбция (Nizet).

Калий участвует в деятельности мышц, сердца, нервной системы, почек, каждой клетки.

Особенности

Большой практический интерес представляет собой взаимосвязь между концентрацией калия в плазме и содержанием калия внутри клетки. Существует принцип, что при уравновешенном обмене веществ содержание калия в плазме определяет его общее содержание во всем организме. На это соотношение влияют:

Значение рН внеклеточной жидкости,

Энергия обмена веществ в клетке,

Функция почек.

Влияние значения рН на концентрацию калия в плазме

При нормальном содержании калия в организме снижение рН увеличивает количество калия в плазме, (повышение рН - уменьшает. Пример: рН 7,3, ацидемия - концентрация калия в плазме 4,8 мэкв/л рН 7,4, норма - концентрация калия в плазме 4,5 мэкв/л рН 7,5, алкалиемия-концентрация калия в плазме 4,2 мэкв/л (Значения рассчитаны по данным Siggaard- Andersen, 1965.) Ацидемии соответствует небольшое по сравнению с нормой повышение концентрации калия в плазме. Иначе говоря, значение 4,5 мэкв/л плазмы указывает при ацидемии на внутриклеточный дефицит калия. Наоборот, при алкалиемии в случае нормального содержания калия нужно ожидать пониженного содержания его в плазме. Зная кислотно-щелочное состояние, можно лучше оценить количество калия в плазме:

Ацидемия →[К]плазма - повышение Алкалиемия→ [К]плазма - снижение

Эти зависимости, выявленные в эксперименте, не всегда клинически доказуемы, так как одновременно развиваются: дальнейшие процессы, влияющие на количество калия в плазме, вследствие чего нивелируется воздействие одного процесса (Heine, Quoss, Guttler).

Влияние энергии обмена веществ клетки на концентрацию калия в плазме

Усиленный отток клеточного калия во внеклеточное пространство происходит, например, при:

Недостаточном снабжении тканей кислородом (шок),

Усиленном разрушении белков (катаболическое состояние).

Сниженной утилизации углеводов (диабет),

Клеточной дегидратации.

Интенсивный приток калия в клетки наблюдается, например, при:

Улучшенной утилизации глюкозы под действием инсулина,

Усиленном синтезе белков (рост, введение анаболических стероидов, репарационная фаза после операции, травма),

Клеточной регидратации.

Разрушающие процессы →[К]плазмы - повышение Восстанавливающие процессы →[К]плазмы - снижение

Ионы натрия, введенные в большом количестве, повышают обмен клеточного калия и способствуют повышенному выведению калия через почки (особенно если ионы натрия связаны не с ионами хлора, а с легко метаболизируемыми анионами, например цитратом). Концентрация калия в плазме вследствие излишка натрия снижается в результате увеличения внеклеточного пространства. Снижение натрия ведет к уменьшению внеклеточного пространства и повышению концентрации калия в плазме:

Излишек натрия→ [К] плазма - снижение Недостаток натрия→[К] плазма - повышение

Влияние почек на концентрацию калия в плазме

Почки меньше влияют на сохранение содержания калия, чем натрия. При недостатке калия почки удерживают его вначале с трудом, поэтому потери могут превышать введение. Наоборот, при передозировке калий довольно легко удаляется током мочи. При олигурии и анурии повышается количество калия в плазме.

Олигурия, анурия→ [К] плазма - повышение

Таким образом, внеклеточная (плазменная) концентрацш калия является результатом динамического равновесия между:

Введением;

Способностью клеток к удержанию в зависимости от значения рН и состоянием обмена веществ (анаболизм - катаболизм);

Ренальным выведением калия в зависимости от:

· кислотно-щелочного состояния,

· тока мочи,

· альдостерона;

Внепочечной потерей калия, например, в желудочно-кишечном тракте. Кальций

У взрослого человека массой 70 кг содержится приблизительно 1000- 1500 г кальция -от 50000 до 75000 мэкв (1,4-2% массы тела), 99% кальция находится в костях и зубах (Rapoport).

Концентрация в плазме: 5(4,5-5,5) мэкв/л с небольшими индивидуальными отклонениями (Rapoport).

Кальций в плазме распределен в трех фракциях, а именно 50-60% ионизировано и способно к диффузии, 35-50% связано с белками (не ионизировано и не способно к диффузии), 5-10% связано комплексной связью с органическими кислотами (лимонная кислота) - не ионизировано, но способно к диффузии (Geigy). Между отдельными фракциями кальция существует подвижное равновесие, которое зависит от рН. При ацидозах, например, степень диссоциации, а, следовательно, и количество диссоциированного кальция возрастают (замедляет явления тетании при ацидозе).

Биологически активны только ионы кальция. Точные данные, позволяющие определить состояние обмена кальция, получают только путем измерения количества ионизированного кальция (Pfoedte, Ponsold).

Основная роль

Составная часть костей. Кальций в костях находится в виде нерастворимого структурного минерала, главным образом фосфата кальция (гидроксилапатит).

Влияние на возбудимость нервов и мышц. Ионы кальция посредничают в биоэлектрическом феномене между поверхностью волокон и контрактильными реакциями внутри волокон.

Влияние на проницаемость мембран.

Вклад в свертывающую систему крови.

Особенности

На абсорбцию кальция в кишечнике влияет состав пищи. Так, абсорбции кальция способствуют лимонная кислота и витамин D, а препятствуют органические кислоты, например оксалиновая кислота (шпинат, ревень), фитиновая кислота (хлеб, хлебные злаки), жирные кислоты (болезни желчного пузыря). Оптимальное соотношение кальция и фосфата (1.2.1) способствует абсорбции. В регуляции содержания кальция играют ведущую роль паратгормон, витамин D и кальцитонин.

В организме человека массой 70 кг находится 20-28 г магния (Hanze)-от 1600 до 2300 мэкв. Он определяется преимущественно в скелете (половина общего количества), меньше в почках, печени, щитовидной железе, мышцах и нервной системе (Simon). Магний наряду с калием является важнейшим катионом клеток животных и растений.

Концентрация в плазме: 1,6-2,3 мэкв/л (Hanze).

Приблизительно 55-60% магния плазмы ионизировано, 30% связано с белками и 15% - с комплексными соединениями (Geigy).

Основная роль

Значение для многочисленных процессов, управляемых ферментами

(регенерация клеток, утилизация кислорода и выделение энергии; Simon). Магний важен для гликолиза, различных ступеней цитратного цикла, окислительного фосфорилирования, активации фосфатов, нуклеаз, различных пептидаз (Hanze).

Тормозит перенос нервного возбуждения в конечную точку (подобно кураре; антагонист - ионы кальция), следствием чего является понижение нервно-мышечного возбуждения.

Депрессивное влияние на центральную нервную систему.

Уменьшение сократительной способности гладкой мускулатуры и миокарда.

Подавление возбуждения в синусовом узле и нарушение атриовентрикулярной проводимости (при очень высоких дозах остановка сердца в диастоле).

Расширение сосудов.

Содействие фибринолизу (Hackethal, Bierstedt).

Особенности

Наряду с абсорбцией и выделением через почки в регуляции содержания магния в организме участвует еще не до конца изученный гормон поджелудочной железы. Дефицит магния приводит к выведению ионов магния и кальция из костей. Абсорбцию понижает пища, богатая белками и кальцием, а также алкоголь (Simon).

В организме человека массой 70 кг содержится приблизительно 100 г хлора - 2800 мэкв (Rapoport). Концентрация в плазме: 103 (97-108) мэкв/л

Основная роль

Хлор - важнейшая часть анионов плазмы.

Ионы хлора участвуют в образовании мембранного потенциала.

Гидрокарбонат

Гидрокарбонат относится к изменяемой части ионов. Изменения в содержании анионов уравновешиваются благодаря гидрокарбонату. Система гидрокарбонат - угольная кислота является важнейшей внеклеточной буферной системой. Значение рН внеклеточного пространства можно рассчитать по отношению гидрокарбоната к угольной кислоте (дальнейшее рассуждение см. 1.3).

В теле взрослого человека содержится 500-800 г фосфата (1% массы тела). 88% находятся в скелете (Grossmann), остальная часть располагается внутриклеточно и лишь небольшая его часть - во внеклеточном пространстве (Rapoport).

Фосфат может быть как органическим (в качестве составной части фосфопротеинов, нуклеиновых кислот, фосфатидов, коферментов - Rapoport), так и неорганическим. Приблизительно 12% фосфатов плазмы связано с белками .

Концентрация в плазме (неорганический фосфор): 1,4- 2,6мэкв/л.

Основная роль

Вместе с кальцием образует нерастворимый гидроксилапатит (опорная функция костей).

Участие в метаболизме углеводов, а также в хранении и переносе энергии (АТФ, креатинфосфат).

Буферное действие.

Особенности

Фосфор находится во всех продуктах питания. Абсорбция стимулируется витамином D и цитратом, задерживается некоторыми металлами (например, алюминием), цианидами, а также повышенным введением кальция. Фосфаты, выделяемые мочой, действуют в качестве буфера.

Концентрация в плазме (неорганического сульфата) :0,65 мэкв/л

Сульфат образуется из серосодержащих аминокислот (например, цистеин, метионин) и выводится через почки.

При почечной недостаточности концентрация сульфатов в плазме повышается в 15-20 раз.

Органические кислотные радикалы

Лактат (молочная кислота).

Пируват (пировиноградная кислота).

Бета-гидроксибутират (бета-гидроксимасляная кислота).

Ацетоацетат (ацетоуксусная кислота).

Сукцинат (янтарная кислота).

Цитрат (лимонная кислота).

Концентрация в плазме: 6 мэкв/л (Geigy)

Молочная кислота является промежуточным продуктом в процессе обмена углеводов. При снижении уровня кислорода (шок, сердечная недостаточность) концентрация молочной кислоты повышается.

Ацетоуксусная кислота и бета-гидроксимасляная кислота (кетоновые тела) появляются при снижении количества углеводов (голод, пост), а также при нарушении утилизации углеводов (диабет) (см. 3.10.3).

Молекулы белков при рН крови 7,4 существуют главным образом в виде анионов (16 мэкв/л плазмы).

Основная роль

Жизнь связана с белками, отсюда без белков нет жизни Белки

Являются основной составной частью клеточных и межтканевых структур;

Ускоряют в качестве ферментов процессы обмена веществ;

Образуют межклеточное вещество кожи, костей и хрящей;

Обеспечивают деятельность мускулатуры благодаря контрактильным свойствам определенных белков;

Определяют коллоидно-осмотическое давление и тем самым водозадерживающую способность плазмы (1 г альбумина связывает 16 г воды);

Являются защитными веществами (антитела) и гормонами (например, инсулин);

Транспортируют вещества (кислород, жирные кислоты, гормоны, лекарственные вещества и др.);

Действуют в качестве буфера;

Участвуют в свертывании крови.

Это перечисление уже показывает основополагающее значение белков.

Особую нагрузку испытывает белковый баланс в состоянии стресса (см. также 3.8.2.1).

Указания для клинициста

Определяя состояние белков, обычно привлекают следующие параметры:

Клиническую оценку состояния пациента (похудание и пр.);

Концентрацию общего белка и альбумина в плазме;

Концентрацию трансферрина;

Состояние иммунитета (например, кожный тест, исследование с помощью БЦЖ и др., определение числа лимфоцитов и др.).

Чувствительный показатель состояния белкового питания, каковым является концентрация альбумина в плазме, представляет величину зкстраваскулярного запаса альбумина, измеряемого с помощью меченого альбумина. Экстраваскулярный, межтканевый альбумин можно рассматривать как белковый резерв. Он повышается при отличном питании и снижается при дефиците белков без изменения концентрации альбумина в плазме (Kudlicka и соавт.).

Внутрисосудистый запас альбумина составляет 120 г, межтканевый - от 60 до 400 г, у взрослых в среднем 200 г. При падении концентрации альбумина в плазме ниже предельной границы нормы значительно истощаются в первую очередь межтканевые запасы альбумина (Kudlicka, Kudlickova), что видно из табл. 2 и 3. У 46 больных, оперированных по поводу хронических гастродуоденальных язв, Studley установил корреляцию послеоперационной летальности с предоперационным похуданием (см. табл.3).

Таблица 2

Летальность в зависимости от концентрации сывороточного альбумина на клиническом материале терапевтических больных (Wuhmann, Marki)



Творчество и игры