Мотонейрон. Нервный импульс

Человека выступает своеобразным координатором в нашем организме. Она передаёт команды от мозга мускулатуре, органам, тканям и обрабатывает сигналы, идущие от них. В качестве своеобразного носителя данных используется нервный импульс. Что он собой представляет? С какой скоростью работает? На эти, а также на ряд других вопросов можно будет найти ответ в этой статье.

Чем является нервный импульс?

Так называют волну возбуждения, что распространяется по волокнам как ответ на раздражение нейронов. Благодаря этому механизму обеспечивается передача информации от различных рецепторов к центральной нервной системе. А от неё, в свою очередь, к разным органам (мышцы и железы). А что же этот процесс являет собой на физиологическом уровне? Механизм передачи нервного импульса заключается в том, что мембраны нейронов могут менять свой электрохимический потенциал. И интересующий нас процесс совершается в области синапсов. Скорость нервного импульса может меняться в рамках от 3 до 12 метров за секунду. Более детально о ней, а также о факторах, что на неё влияют, мы ещё поговорим.

Исследование строения и работы

Впервые прохождение нервного импульса было продемонстрировано немецкими учеными Э. Герингом и Г. Гельмгольцем на примере лягушки. Тогда же и было установлено, что биоэлектрический сигнал распространяется с указанной ранее скоростью. Вообще, такое является возможным благодаря особенному построению В некотором роде они напоминают электрический кабель. Так, если проводить параллели с ним, то проводниками являются аксоны, а изоляторами - их миелиновые оболочки (они являют собой мембрану шванновской клетки, которая намотана в несколько слоев). Причем скорость нервного импульса зависит в первую очередь от диаметра волокон. Вторым по важности считается качество электрической изоляции. Кстати, в качестве материала организмом используется липопротеид миелин, который обладает свойствами диэлектрика. При прочих равных условиях, чем больше будет его слой, тем быстрее будут проходить нервные импульсы. Даже на данный момент нельзя сказать, что эта система полноценно исследована. Многое, что относится к нервам и импульсам, ещё остаётся загадкой и предметом исследования.

Особенности строения и функционирования

Если говорить про путь нервного импульса, то необходимо отметить, что волокно покрывается не по всей своей длине. Особенности построения таковы, что сложившуюся ситуацию лучше всего будет сравнить с созданием изолирующих керамических муфт, что плотно нанизываются на стержень электрического кабеля (хотя в данном случае на аксон). Как результат - есть небольшие неизолированные электрические участки, с которых ионный ток может спокойно вытечь из аксона в окружающую среду (или наоборот). При этом раздражается мембрана. Вследствие этого вызывается генерация в участках, что не изолированы. Этот процесс называется перехватом Ранвье. Наличие такого механизма позволяет сделать так, чтобы нервный импульс распространялся значительно быстрее. Давайте об этом поговорим на примерах. Так, скорость проведения нервного импульса в толстом миелинизированном волокне, диаметр которого колеблется в рамках 10-20 микрон, составляет 70-120 метров за секунду. Тогда как у тех, у кого неоптимальная структура, этот показатель меньше в 60 раз!

Где они создаются?

Нервные импульсы возникают в нейронах. Возможность создания таких «посланий» является одним из основных их свойств. Нервный импульс обеспечивает быстрое распространение однотипных сигналов по аксонам на большое расстояние. Поэтому это самое важное средство организма для обмена информацией в нём. Данные о раздражении передаются с помощью изменения частоты их следования. Здесь работает сложная система периодики, которая может насчитывать сотни нервных импульсов в одну секунду. По несколько подобному принципу, хотя и значительно усложненному, работает компьютерная электроника. Так, когда нервные импульсы возникают в нейронах, то они кодируются определённым образом, а только потом уже передаются. При этом информация группируется в специальные «пачки», которые имеют разное число и характер следования. Всё это, сложенное вместе, и составляет основу для ритмической электрической активности нашего мозга, что можно зарегистрировать благодаря электроэнцефалограмме.

Типы клеток

Говоря про последовательность прохождения нервного импульса, нельзя обойти вниманием (нейроны), по которым и происходит передача электрических сигналов. Так, благодаря им обмениваются информацией разные части нашего организма. В зависимости от их структуры и функционала выделяют три типа:

  1. Рецепторные (чувствительные). Ими кодируются и превращаются в нервные импульсы все температурные, химические, звуковые, механические и световые раздражители.
  2. Вставочные (также называются кондукторными или замыкательными). Они служат для того, чтобы перерабатывать и переключать импульсы. Наибольшее их число находится в головном и спинном мозге человека.
  3. Эффекторные (двигательные). Они получают команды от центральной нервной системы на то, чтобы были совершены определённые действия (при ярком солнце закрыть рукой глаза и так далее).

Каждый нейрон имеет тело клетки и отросток. Путь нервного импульса по телу начинается именно с последнего. Отростки бывают двух типов:

  1. Дендриты. На них возложена функция восприятия раздражения расположенных на них рецепторов.
  2. Аксоны. Благодаря им нервные импульсы передаются от клеток к рабочему органу.

Говоря про проведение нервного импульса клетками, сложно не рассказать об одном интересном моменте. Так, когда они находятся в покое, то, скажем так, натриево-калиевый насос занимается перемещением ионов таким образом, чтобы достичь эффекта пресной воды внутри и соленой внешне. Благодаря получаемому дисбалансу разницы потенциалов на мембране можно наблюдать до 70 милливольт. Для сравнения - это 5% от обычных Но как только меняется состояние клетки, то получившееся равновесие нарушается, и ионы начинают меняться местами. Так происходит, когда через неё проходит путь нервного импульса. Благодаря активному действию ионов это действие и называют ещё потенциалом действия. Когда он достигает определённого показателя, то начинаются обратные процессы, и клетка достигает состояния покоя.

О потенциале действия

Говоря про преобразование нервного импульса и его распространение, следует отметить, что оно могло бы составлять жалкие миллиметры в секунду. Тогда бы сигналы от руки до мозга доходили бы за минуты, что явно нехорошо. Вот тут и играет свою роль в усилении потенциала действия рассмотренная ранее оболочка из миелина. А все её «пропуски» размещены таким образом, чтобы они только позитивно сказывались на скорости передачи сигналов. Так, когда импульсом достигается конец основной части одного тела аксона, то он передаётся либо следующей клетке, либо (если говорить о мозге) многочисленным ответвлениям нейронов. Вот в последних случаях работает немного другой принцип.

Как всё работает в мозгу?

Давайте поговорим, какая передаточная последовательность нервного импульса работает в наиболее важных частях нашей ЦНС. Здесь нейроны от своих соседей отделяются небольшими щелями, что называются синапсами. Потенциал действия не может переходить через них, поэтому он ищет иной способ, чтобы попасть к следующей нервной клетке. На конце каждого отростка есть небольшие мешочки, что называются пресинаптическими пузырьками. В каждом из них имеются особые соединения - нейромедиаторы. Когда к ним поступает потенциал действия, то высвобождаются из мешочков молекулы. Они пересекают синапс и присоединяются к особенным молекулярным рецепторам, что расположены на мембране. При этом нарушается равновесия и, вероятно, появляется новый потенциал действия. Достоверно это ещё не известно, нейрофизиологи занимаются изучениями вопроса и по сей день.

Работа нейромедиаторов

Когда они передают нервные импульсы, то существует несколько вариантов, что произойдёт с ними:

  1. Они будут диффундированы.
  2. Подвергнутся химическому расщеплению.
  3. Вернутся назад в свои пузырьки (это называется обратным захватом).

В конце 20-го века сделали поразительное открытие. Ученые узнали, что лекарства, что влияют на нейромедиаторы (а также их выброс и обратный захват), могут изменять психическое состояние человека коренным образом. Так, к примеру, ряд антидепрессантов вроде "Прозака" блокируют обратный захват серотонина. Есть определённые причины считать, что в болезни Паркинсона виноват дефицит в головном мозге нейромедиатора дофамина.

Сейчас исследователи, которые изучают пограничные состояния человеческой психики, пробуют разобраться, как же это всё влияет на рассудок человека. Ну а пока же у нас нет ответа на такой фундаментальный вопрос: что же заставляет нейрон создавать потенциал действия? Пока механизм «запуска» этой клетки для нас является секретом. Особенно интересным с точки зрения данной загадки является работа нейронов главного мозга.

Если кратко, то они могут работать с тысячами нейромедиаторов, которые посылаются их соседями. Детали относительно обработки и интеграции данного типа импульсов нам почти не известны. Хотя над этим работает много исследовательских групп. На данный момент получилось узнать, что все полученные импульсы интегрируются, а нейрон выносит решение - необходимо ли поддерживать потенциал действия и передавать их дальше. На этом фундаментальном процессе базируется функционирование головного мозга человека. Ну что ж, тогда это неудивительно, что мы не знаем ответа на эту загадку.

Некоторые теоретические особенности

В статье «нервный импульс» и «потенциал действия» использовались в качестве синонимов. Теоретически это верно, хотя в некоторых случаях необходимо учитывать некоторые особенности. Так, если вдаваться в детали, то потенциал действия является только частью нервного импульса. При детализированном рассмотрении ученых книг можно узнать, что так называют только изменение заряда мембраны с положительного на отрицательный, и наоборот. Тогда как под нервным импульсом понимают сложный структурно-электрохимический процесс. Он распространяется по мембране нейрона как бегущая волна изменений. Потенциал действия - всего лишь электрический компонент в составе нервного импульса. Он характеризирует изменения, что происходят с зарядом локального участка мембраны.

Где же создаются нервные импульсы?

Откуда они начинают свой путь? Ответ на этот вопрос может дать любой студент, который прилежно изучал физиологию возбуждения. Есть четыре варианта:

  1. Рецепторное окончание дендрита. Если оно есть (что не факт), то возможным является наличие адекватного раздражителя, что создаст сначала генераторный потенциал, а потом уже и нервный импульс. Подобным образом работают болевые рецепторы.
  2. Мембрана возбуждающего синапса. Как правило, такое возможно только при наличии сильного раздражения или их суммирования.
  3. Триггерная зона дентрида. В этом случае локальные возбуждающие постсинаптические потенциалы формируются как ответ на раздражитель. Если первый перехват Ранвье миелинизирован, то они на нём суммируются. Благодаря наличию там участка мембраны, которая обладает повышенной чувствительностью, здесь возникает нервный импульс.
  4. Аксонный холмик. Так называют место, где начинается аксон. Холмик - это наиболее частый создать импульсов на нейроне. Во всех остальных местах, которые рассматривались ранее, их возникновение гораздо менее вероятное. Это происходит из-за того, что здесь мембрана имеет повышенную чувствительность, а также пониженный Поэтому, когда начинается суммирование многочисленных возбуждающих постсинаптических потенциалов, то раньше всего на них реагирует холмик.

Пример распространяющегося возбуждения

Рассказ медицинскими терминами может вызвать непонимание отдельных моментов. Чтобы устранить это, стоит кратко пройтись по изложенным знаниям. В качестве примера возьмем пожар.

Вспомните сводки из новостей прошлого лета (также это скоро можно будет услышать опять). Пожар распространяется! При этом деревья и кустарники, которые горят, остаются на своих местах. А вот фронт огня идёт всё дальше от места, где был очаг возгорания. Аналогичным образом работает нервная система.

Часто бывает необходимо успокоить начавшееся возбуждение нервной системы. Но это не так легко сделать, как и в случае с огнем. Для этого совершают искусственное вмешательство в работу нейрона (в лечебных целях) или используют различные физиологические средства. Это можно сравнить с заливанием пожара водой.

В результате эволюции нервной системы человека и других животных возникли сложные информационные сети, процессы в которых основаны на химических реакциях. Важнейшим элементом нервной системы являются специализированные клетки нейроны . Нейроны состоят из компактного тела клетки, содержащего ядро и другие органеллы. От этого тела отходит несколько разветвленных отростков. Большинство таких отростков, называемых дендритами , служат точками контакта для приема сигналов от других нейронов. Один отросток, как правило самый длинный, называется аксоном и передает сигналы на другие нейроны. Конец аксона может многократно ветвиться, и каждая из этих более мелких ветвей способна соединиться со следующим нейроном.

Во внешнем слое аксона находится сложная структура, образованная множеством молекул, выступающих в роли каналов, по которым могут поступать ионы — как внутрь, так и наружу клетки. Один конец этих молекул, отклоняясь, присоединяется к атому-мишени. После этого энергия других частей клетки используется на то, чтобы вытолкнуть этот атом за пределы клетки, тогда как процесс, действующий в обратном направлении, вводит внутрь клетки другую молекулу. Наибольшее значение имеет молекулярный насос, который выводит из клетки ионы натрия и вводит в нее ионы калия (натрий-калиевый насос).

Когда клетка находится в покое и не проводит нервных импульсов, натрий-калиевый насос перемещает ионы калия внутрь клетки и выводит ионы натрия наружу (представьте себе клетку, содержащую пресную воду и окруженную соленой водой). Из-за такого дисбаланса разность потенциалов на мембране аксона достигает 70 милливольт (приблизительно 5% от напряжения обычной батарейки АА).

Однако при изменении состояния клетки и стимуляции аксона электрическим импульсом равновесие на мембране нарушается, и натрий-калиевый насос на короткое время начинает работать в обратном направлении. Положительно заряженные ионы натрия проникают внутрь аксона, а ионы калия откачиваются наружу. На мгновение внутренняя среда аксона приобретает положительный заряд. При этом каналы натрий-калиевого насоса деформируются, блокируя дальнейший приток натрия, а ионы калия продолжают выходить наружу, и исходная разность потенциалов восстанавливается. Тем временем ионы натрия распространяются внутри аксона, изменяя мембрану в нижней части аксона. При этом состояние расположенных ниже насосов меняется, способствуя дальнейшему распространению импульса. Резкое изменение напряжения, вызванное стремительными перемещения ионов натрия и калия, называют потенциалом действия . При прохождении потенциала действия через определенную точку аксона, насосы включаются и восстанавливают состояние покоя.

Потенциал действия распространяется довольно медленно — не более доли дюйма за секунду. Для того чтобы увеличить скорость передачи импульса (поскольку, в конце концов, не годится, чтобы сигнал, посланный мозгом, достигал руки лишь через минуту), аксоны окружены оболочкой из миелина, препятствующей притоку и оттоку калия и натрия. Миелиновая оболочка не непрерывна — через определенные интервалы в ней есть разрывы, и нервный импульс перескакивает из одного «окна» в другое, за счет этого скорость передачи импульса возрастает.

Когда импульс достигает конца основной части тела аксона, его необходимо передать либо следующему нижележащему нейрону, либо, если речь идет о нейронах головного мозга, по многочисленным ответвлениям многим другим нейронам. Для такой передачи используется абсолютно иной процесс, нежели для передачи импульса вдоль аксона. Каждый нейрон отделен от своего соседа небольшой щелью, называемой синапсом . Потенциал действия не может перескочить через эту щель, поэтому нужно найти какой-то другой способ для передачи импульса следующему нейрону. В конце каждого отростка имеются крошечные мешочки, называющие (пресинаптическими ) пузырьками , в каждом из которых находятся особые соединения — нейромедиаторы . При поступлении потенциала действия из этих пузырьков высвобождаются молекулы нейромедиаторов, пересекающие синапс и присоединяющиеся к специфичным молекулярным рецепторам на мембране нижележащих нейронов. При присоединении нейромедиатора равновесие на мембране нейрона нарушается. Сейчас мы рассмотрим, возникает ли при таком нарушении равновесия новый потенциал действия (нейрофизиологи продолжают искать ответ на этот важный вопрос до сих пор).

После того как нейромедиаторы передадут нервный импульс от одного нейрона на следующий, они могут просто диффундировать, или подвергнуться химическому расщеплению, или вернуться обратно в свои пузырьки (этот процесс нескладно называется обратным захватом ). В конце XX века было сделано поразительное научное открытие — оказывается, лекарства, влияющие на выброс и обратный захват нейромедиаторов, могут коренным образом изменять психическое состояние человека. Прозак (Prozac*) и сходные с ним антидепрессанты блокируют обратный захват нейромедиатора серотонина. Складывается впечатление, что болезнь Паркинсона взаимосвязана с дефицитом нейромедиатора допамина в головном мозге. Исследователи, изучающие пограничные состояния в психиатрии, пытаются понять, как эти соединения влияют на человеческий рассудок.

По-прежнему нет ответа на фундаментальный вопрос о том, что же заставляет нейрон инициировать потенциал действия — выражаясь профессиональным языком нейрофизиологов, неясен механизм «запуска» нейрона. В этом отношении особенно интересны нейроны головного мозга, которые могут принимать нейромедиаторы, посланные тысячей соседей. Об обработке и интеграции этих импульсов почти ничего не известно, хотя над этой проблемой работают многие исследовательские группы. Нам известно лишь, что в нейроне осуществляется процесс интеграции поступающих импульсов и выносится решение, следует или нет инициировать потенциал действия и передавать импульс дальше. Этот фундаментальный процесс управляет функционированием всего головного мозга. Неудивительно, что эта величайшая загадка природы остается, по крайней мере сегодня, загадкой и для науки!

Проведение нервных импульсов по нервным волокнам и через синапсы. Высоковольтный потенциал, возникающий при возбуждении рецептора в нервном волокне, в 5-10 раз больше порога раздражения рецептора. Проведение волны возбуждения по нервному волокну обеспечивается тем, что каждый последующий его участок раздражается высоковольтным потенциалом предыдущего участка. В мякотных нервных волокнах этот потенциал распространяется не непрерывно, а скачкообразно; он перескакивает через один или даже несколько перехватов Ранвье, в которых усиливается. Продолжительность проведения возбуждения между двумя соседними перехватами Ранвье равняется 5-10% длительности высоковольтного потенциала.


Проведение нервного импульса по нервному волокну происходит только при условии его анатомической непрерывности и нормального физиологического его состояния. Нарушение физиологических свойств нервного волокна сильным охлаждением или отравлением ядами и наркотиками прекращает проведение нервного импульса даже при анатомической его непрерывности.

Нервные импульсы проводятся изолированно по отдельным двигательным и чувствительным нервным волокнам, которые входят в состав смешанного нерва, что зависит от изолирующих свойств покрывающих их миелиновых оболочек. В безмякотных нервных волокнах биоток распространяется непрерывно вдоль волокна и благодаря соединительнотканой оболочке не переходит с одного волокна на другое. Нервный импульс может распространяться по нервному волокну в двух направлениях: центростремительном и центробежном. Следовательно, существуют три правила проведения нервного импульса в нервных волокнах: 1) анатомической непрерывности и физиологической целости, 2) изолированного проведения и 3) двустороннего проведения.

Через 2-3 дня после отделения нервных волокон от тела нейрона они начинают перерождаться, или дегенерировать, и проведение нервных импульсов прекращается. Нервные волокна и миелин разрушаются и сохраняется только соединительнотканая оболочка. Если соединить перерезанные концы нервных волокон, или нерва, то после дегенерации тех участков, которые отделены от нервных клеток, начинается восстановление, или регенерация, нервных волокон со стороны тел нейронов, из которых они прорастают в сохранившиеся соединительнотканые оболочки. Регенерация нервных волокон приводит к восстановлению проведения импульсов.

В отличие от нервных волокон через нейроны нервной системы нервные импульсы проводятся только в одном направлении - от рецептора к работающему органу. Это зависит от характера проведения нервного импульса через синапсы. В нервном волокне над пресинаптической мембраной есть множество мельчайших пузырьков ацетилхолина. При достижении биотоком пресинаптической мембраны часть этих пузырьков лопается, и ацетилхолин проходит через мельчайшие отверстия в пресинаптической мембране в синаптическую щель.
В постсинаптической мембране имеются участки, обладающие особым сродством к ацетилхолину, который вызывает временное появление пор в постсинаптической мембране, отчего она становится временно проницаемой для ионов. В результате в постсинаптической мембране возникает возбуждение и высоковольтный потенциал, который распространяется по следующему нейрону или по иннервируемому органу. Следовательно, передача возбуждения через синапсы происходит химическим путем посредством посредника, или медиатора, ацетилхолина, а проведение возбуждения по следующему нейрону снова осуществляется электрическим путем.

Действие ацетилхолина на проведение нервного импульса через синапс кратковременно; он быстро разрушается, гидролизуется ферментом холинэстеразой.

Так как химическая передача нервного импульса в синапсе происходит в течение доли мсек, то в каждом синапсе нервный импульс на это время задерживается.

В отличие от нервных волокон, в которых информация передается по принципу «все или ничего», т. е. дискретно, в синапсах информация передается по принципу «больше или меньше», т. е. градуально. Чем больше до некоторого предела образуется медиатора ацетилхолина, тем выше частота высоковольтных потенциалов в последующем нейроне. После этого предела возбуждение переходит в торможение. Таким образом, цифровая информация, передаваемая по нервным волокнам, переходит в синапсах в измерительную информацию. Измерительные электронные машины,

в которых имеются определенные соотношения между реально измеряемыми количествами и теми величинами, которые они представляют, называются аналоговыми, работающими по принципу «больше или меньше»; можно считать, что в синапсах происходит аналогичный процесс и совершается его переход в цифровой. Следовательно, нервная система функционирует по смешанному типу: в ней совершаются и цифровые и аналоговые процессы.

НАУЧНО – ИССЛЕДОВАТЕЛЬСКАЯ РАБОТА

Электрическая природа нервного импульса

    Введение 3

    Опыты Л. Гальвани и А.Вольта 3

    Биотоки в живых организмах 4

    Эффект раздражимости. 5

    Нервная клетка и передача нервного импульса 6

    Действие нервного импульса на различные части тела 8

    Воздействие электрической активностью в медицинских целях 9

    Скорость реакции 10

    Вывод 11

    Литература 11

    Приложение

Введение

«Как ни чудесны законы и явления

электричества,

выявляющиеся нам в мире

неорганического или

мертвого вещества, интерес,

который они

представляют, вряд ли может

сравниться с тем,

что присуще той же силе

в соединении с нервной

системой и жизнью»

М. Фарадей

Цель работы: Определить факторы влияющие на распространение нервного импульса.

Перед данной работой стояли следующие задачи:

1. Изучить историю развития науки о биоэлектричестве.

2. Рассмотреть электрические явления в живой природе.

3. Исследовать передачу нервного импульса.

4. Проверить на практике, что влияет на скорость передачи нервного импульса.

Опыты Л. Гальвани и А.Вольта

Ещё в XVIII в. итальянский врач Луиджи Гальвани (1737-1787) обнаружил, что если к обезглавленному телу лягушки подвести электрическое напряжение, то наблюдаются сокращения её лапок. Так он показал воздействие электрического тока на мышцы, поэтому его по праву называют отцом электрофизиологии. В других опытах он подвешивал лапку от препарированной лягушки на латунном крючке. В момент, когда, раскачиваясь, лапка касалась железной решётки балкона, где производились опыты, опять наблюдалось сокращение лапки. Гальвани предположил существование между нервом и лапкой разности потенциалов - «животного электричества». Сокращение мышцы он объяснил действием электрического тока, возникающего в тканях лягушки при замыкании цепи через металл.

Соотечественник Гальвани, Алессандро Вольта (1745-1827), внимательно изучил электрическую цепь, которой пользовался Гальвани, и доказал, что в ней имеются два разнородных металла, которые замыкаются через солевой раствор, т.е. на лицо полное подобие химического источника тока. Нервно-мышечный препарат, утверждал он, в этом опыте служит всего-навсего чувствительным гальванометром.

Гальвани не мог признать своё поражение. Он набрасывал на мышцу нерв в различных условиях, чтобы доказать, что и без металла можно получать сокращение мышцы за счёт электричества «животного происхождения». Одному из его последователей это наконец удалось. Оказалось, что электрический ток возникает в тех случаях, когда нерв набрасывали на повреждённую мышцу. Так были открыты электрические токи между здоровой и повреждённой тканью. Они так и были названы - токи повреждения. Позднее было показано, что любая деятельность нервов, мышц и других тканей сопровождается генерацией электрических токов.

Таким образом, наличие биотоков в живых организмах было доказано. В наши дни их регистрируют и исследуют чувствительными приборами - осциллографами.

Биотоки в живых организмах

Интересны первые сведения об изучении электрических явлений в живой природе. Объектом наблюдений стали электрические рыбы. Опытами над электрическим скатом Фарадей установил, что электричество, создаваемое специальным органом этой рыбы, совершенно тождественно электричеству, получаемому от химического или другого источника, хотя является продуктом деятельности живой клетки. Последующие наблюдения показали, что многие рыбы имеют особые электрические органы, своего рода «батареи», вырабатывающие большие напряжения. Так, гигантский скат создаёт напряжение в разряде 50-60 В, нильский электрический сом 350 В, а угорь-электрофорус - свыше 500 В. Тем не менее на тело самой рыбы это высокое напряжение никакого действия не оказывает!

Электрические органы этих рыб состоят из мышц, которые потеряли способность к сокращениям: мышечная ткань служит проводником, а соединительная ткань - изолятором. К органу идут нервы от спинного мозга, а в целом он представляет собой мелкопластинчатую структуру из чередующихся элементов. Например, угорь имеет от 6000 до 10 000 соединённых последовательно элементов, образующих колонку, и около 70 колонок в каждом органе, расположенном вдоль тела. У взрослых особей на этот орган приходится около 40% всей массы тела. Роль электрических органов велика, они служат для защиты и атаки, а также являются частью очень чувствительной навигационно-локационной системы.

Эффект раздражимости.

Одна из наиболее важных функций организма, называемая раздражимостью, - способность реагировать на изменения окружающей среды. Наиболее высокая раздражимость - у животных и человека, которые обладают специализированными клетками, образующими нервную ткань. Нервные клетки - нейроны - приспособлены для быстрого и специфического ответа на разнообразные раздражения, поступающие из внешней среды и тканей самого организма. Получение и передача раздражений происходит при помощи электрических импульсов, распространяющихся по определённым путям.

Нервная клетка и передача нервного импульса

Нервная клетка, нейрон, представляет собой звездообразное тело и состоит из тонких отростков - аксонов и дендритов. Конец аксона переходит в тонкие волокна, которые заканчиваются в мышце или синапсах. У взрослого человека длина аксона может достигать 1-1,5 м при толщине около 0,01 мм. Мембрана клетки играет особую роль в образовании и передаче нервного импульса.

То, что нервный импульс представляет собой импульс электрического тока, было доказано лишь к середине XX в., в основном работами группы А.Ходжкина. В 1963 г. А.Ходжкину, Э.Хаксли и Дж.Эклсу была присуждена Нобелевская премия по физиологии и медицине «за открытия, касающиеся ионных механизмов, участвующих в возбуждении и торможении в периферическом и центральном участках мембраны нервной клетки». Опыты проводились на гигантских нейронах (диаметр 0,5 мм) - аксонах кальмара.

Определённые части мембраны обладают полупроводниковыми и ионоселективными свойствами - пропускают ионы одного знака или одного элемента. На такой избирательной способности основано появление мембранного потенциала, от которого зависит работа информационной и энергопреобразующей систем организма. Во внешнем растворе более 90% заряженных частиц представляют собой ионы натрия и хлора. В растворе внутри клетки основную часть положительных ионов представляют ионы калия, а отрицательных - крупные органические ионы. Концентрация ионов натрия снаружи в 10 раз выше, чем внутри, а ионов калия внутри - в 30 раз выше, чем снаружи. Благодаря этому на стенке клетки возникает двойной электрический слой. Так как мембрана в состоянии покоя хорошо проницаема, между внутренней частью и внешней средой возникает разность потенциалов, составляющая 60- 100 мВ, причём внутренняя часть заряжена отрицательно. Эту разность потенциалов называют потенциалом покоя.

При раздражении клетки двойной электрический слой частично разряжается. Когда потенциал покоя снижается до 15-20 мВ, пропускная способность мембраны увеличивается, и ионы натрия устремляются в клетку. Как только положительная разность потенциалов между обеими поверхностями мембраны достигнута, поток ионов натрия иссякает. В тот же миг открываются каналы для ионов калия, и потенциал сдвигается в отрицательную сторону. Это, в свою очередь, уменьшает подводимость ионов натрия, и потенциал возвращается в состояние покоя.

Возникающий в клетке сигнал распространяется по аксону за счёт проводимости находящегося внутри него электролита. Если аксон имеет особую изоляцию - миелиновую оболочку, - то электрический импульс проходит эти участки быстрее, и общая скорость определяется величиной и количеством неизолированных участков. Скорость импульса в аксоне 100 м/с.

Каким же образом осуществляется передача сигнала через разрыв? Оказалось, что мембрана синапса неоднородна по строению - в центральных областях она имеет «окна» с низким сопротивлением, а у края сопротивление высокое. Неоднородность мембраны создаётся особым способом: с помощью специального белка - коппектина. Молекулы этого белка образуют особую структуру - копнексон, состоящую, в свою очередь, из шести молекул и имеющую внутри канал. Таким образом, синапс связывает две клетки множеством меленьких трубочек, проходящих внутри белковых молекул. Щель между мембранами заполнена изолятором. У птиц в качестве изолятора выступает белок миелин.

Когда изменение потенциалов в мышечном волокне достигает порога возбуждения электровозбудимой мембраны, в ней возникает потенциал действия и мышечное волокно сокращается.

Действие нервного импульса на различные части тела

Человечество уже не одно тысячелетие ломает голову над тем, что же происходит в мозгу у каждого человека. Сейчас известно, что в мозгу мысли рождаются под действием электрического тока, но механизм не изучен. Размышляя о взаимодействии химических и физических явлений, Фарадей сказал: «Как ни чудесны законы и явления электричества, которые мы наблюдали в мире неорганического вещества и неживой природы, интерес, который они представляют, вряд ли может сравниться с тем, что вызывает та же сила в сочетании с жизнью».

У человека тоже найдено электромагнитное поле, порождённое биоэлектрическими потенциалами на поверхности клеток. Советский изобретатель С.Д.Кирлиан сумел сделать это явление наглядным в прямом смысле слова. Он предложил фотографировать тело человека, поместив его между двумя большими металлическими стенками, к которым приложено переменное электрическое напряжение. В среде с повышенным электромагнитным полем на коже человека возникают микрозаряды, причём активнее всего ведут себя те места, где выходят наружу нервные окончания. На фотографиях, сделанных по методу Кирлиана, они видны в виде маленьких, ярко светящихся точек. Эти точки, как выяснилось, расположены именно в тех местах тела, в которые рекомендуется погружать серебряные иголки при лечении иглоукалыванием.

Таким образом, используя запись биотоков мозга как обратную связь, можно оценивать степень молитвенного погружения пациента.

Сейчас известно, что некоторые участки мозга отвечают за эмоции и за творческую деятельность. Можно определить, находится ли в возбуждённом состоянии та или иная область мозга, но расшифровать эти сигналы невозможно, поэтому можно с уверенностью сказать, что человечество ещё очень нескоро научится читать мысли.

Мысль человека - это продукт работы мозга, связанный с биоэлектрическими явлениями в нём и в других частях организма. Именно биотоки, возникающие в мышцах человека, который думает о сжимании пальцев в кулак, уловленные и усиленные соответствующей аппаратурой, сжимают пальцы механической руки.

Академики психиатр Владимир Михайлович Бехтерев и биофизик Пётр Петрович Лазарев признавали, что в каких-то особых условиях, науке ещё точно не известных, электрическая энергия одного мозга может воздействовать на расстоянии на мозг другого человека. Если этот мозг соответственно «настроен», предполагали они, можно вызвать в нём «резонансные» биоэлектрические явления и, как продукт их, соответствующие представления.

Изучение электрических явлений в организме принесло значительную пользу. Перечислим наиболее известные.

Воздействие электрической активностью в медицинских целях

О В медицине и физиологии широко используется электрохимия. Разность потенциалов между двумя точками клетки определяется с помощью микроэлектродов. С их же помощью можно измерить содержание кислорода в крови: в кровь вводится катетер, основой которого является платиновый электрод, помещённый вместе с электродом сравнения в раствор электролита, который отделён от анализируемой крови пористой гидрофобной тефлоновой плёнкой; растворённый в крови кислород диффундирует через поры тефлоновой плёнки к платиновому электроду и восстанавливается на нём.

О В процессе жизнедеятельности состояние органа, а следовательно, и его электрическая активность меняются с течением времени. Метод исследования их работы, основанный на регистрации потенциалов электрического поля на поверхности тела, называется электрографией. Название электрограммы указывает на исследуемые органы или ткани: сердца - электрокардиограмма, головного мозга - электроэнцефалограмма, мышц - электромиограмма, кожи - кожногальваническая реакция и др.

О В медицинской практике широко применяют электрофорез - для разделения белков, аминокислот, антибиотиков, ферментов с целью контроля за ходом болезни. Столь же распространён ионофорез.

О Известный аппарат «искусственная почка», к которому подключают больного при острой почечной недостаточности, основан на явлении электродиализа. Кровь протекает в узком зазоре между двумя мембранами, омываемыми физиологическим раствором, при этом из неё удаляются шлаки - продукты обмена и распада тканей.

О Исследователи из США предложили лечить эпилепсию электростимуляцией. С этой целью под кожу в верхней части груди вшивают крошечное устройство, запрограммированное на стимуляцию блуждающего нерва в течение 30 ч с интервалом 5- 15 мин. Его действие опробовано в США, Канаде, Германии. У больных, которым лекарства не помогали, через 3 месяца количество припадков сократилось на 25%, через 1,5 года - на 50%.

Скорость реакции

Одна из характеризующих мозг особенностей - это скорость реакции. Она определяется временем, за которое первый импульс движется от рецепторов органа, воспринявшего раздражение, до органа, производящего ответную реакцию организма. Из проведённого мною анкетирования следует, что на скорость реакции и внимательность влияют многие факторы. В частности, она может снижаться по следующим причинам: неинтересный и (или) монотонно излагаемый педагогом учебный материал; слабая дисциплина в классе; неясность цели и плана урока; спёртый воздух в помещении; слишком высокая или слишком низкая температура в классе; посторонний шум; наличие новых ненужных пособий, утомление к концу дня.

Существуют также индивидуальные причины невнимательности: слишком лёгкое или слишком трудное усвоение материала; неприятные семейные события; болезнь, переутомление; просмотр большого количества кинофильмов; позднее засыпание.

Вывод

Огромное влияние на нервную деятельность человека имеют слова. Чем больше слушающие доверяют говорящему, тем ярче эмоциональная окраска воспринимаемых ими слов и тем сильнее их действие. Врачу доверяет больной, педагогу - ученик, поэтому следует с особенной тщательностью выбирать слова - раздражители второй сигнальной системы. Так, хорошо уже летавший курсант лётного училища вдруг начал испытывать непреодолимый страх. Оказалось, что авторитетный для него лётчик-инструктор, уезжая, оставил ему записку: «Надеюсь, скоро увидимся, но будь осторожен со штопором».

Словом можно и вызвать заболевание, и успешно вылечить. Лечение словом - логотерапия - является частью психотерапии. Мой следующий опыт - прямое тому доказательство. Я попросил двух людей выполнять следующие действия: одновременно одной рукой круговыми движениями гладить живот, другой касаться головы вдоль прямой линии. Выяснилось, что сделать это довольно сложно - движения получались либо одновременно круговыми, либо линейными. Однако на испытуемых я воздействовал по-разному: одному говорил, что у него вот-вот получится, а другому, что у него ничего не выйдет. Через некоторое время у первого всё получилось, а у другого так ничего и не вышло.

Личными показателями необходимо руководствоваться при выборе профессии. Если скорость реакции невелика, то лучше не выбирать профессии, требующие большого внимания, быстрого анализа ситуации (лётчик, шофёр и т.п.).

Литература

    Воронков Г.Я. Электричество в мире химии. - М.: Знание, 1987.

    Третьякова С.В. Нервная система человека. - Физика («ПС»), № 47.

    Платонов К. Занимательная психология. - М.: Литер, 1997.

    Беркинблит М.Б., Глаголева Е.Г. Электричество в живых организмах. - М.: Наука, 1988.

Влияние усталости на нервный электрический импульс

Цель: проверить влияние физических нагрузок на скорость реакции.

Ход исследования: Обычное время простой реакции равно 100-200 мс - на свет, 120-150 мс - на звук и 100-150 мс - на электрокожный раздражитель. Я провел опыт по методу академика Платонова. В начале урока физической культуры, мы зафиксировали время реакции при ловле мяча, затем проверили данную реакцию после физических нагрузок.

Имя,Фамилия 11А Класс СОШ № 22

Время реакции до Физ.нагрузки

Время реакции после физ. Нагрузки

Кочарян Карен

0.13с

0.15с

Николаев Валерий

0.15с

0.16с

Казаков Вадим

0.14с

0.16с

Кузьмин Никита

0.8с

0.1с

Сафиуллин Тимур

0.13с

0.15с

Тухватуллин Ришат

0.9с

0.11с

Фарафонов Артур

0.9с

0.11с

Вывод: Нами было зафиксировано время реакции до и после физической нагрузке. Мы сделали следующий вывод, что усталость замедляет время реакции. Исходя из этого можно посоветовать учителям при составлении расписания предметы, требующие максимального внимания, ставить в середине учебного дня, когда ученики ещё не устали и способны к полноценной умственной деятельности.

Нейроны сообщаются между собой при помощи «нервных сообщений». Эти «сообщения» похожи на электрический ток, который бежит по проводам. Иногда, при передаче от одного нейрона к другому, эти импульсы превращаются в химические сообщения.

Нервные импульсы

Информация передается между нейронами подобно электрическому току в проводах. Эти сообщения закодированы: они представляют собой последовательность совершенно одинаковых импульсов. Сам код кроется в их частоте, то есть в числе импульсов в секунду. Импульсы передаются от клетки к клетке, от дендрита, в котором они возникают, к аксону, через который они проходят. Но есть и отличие от электрических сетей - импульсы передаются не при помощи электронов*, а при помощи более сложных частиц - ионов.

Медикаменты, влияющие на скорость импульсов

Существует множество химических препаратов, способных изменить характеристики передачи нервных импульсов. Как правило, они действуют на синаптическом уровне. Анестетики и транквилизаторы замедляют, а иногда и вообще подавляют передачу импульсов. А антидепрессанты и стимуляторы, такие как кофеин, наоборот способствуют лучшей их передаче.

С огромной скоростью

Нервные импульсы должны быстро проходить по телу. Ускорить их прохождение нейронам помогают окружающие их глиальные клетки. Они образуют оболочку нервного волокна, называемую миелиновой. В результате импульсы идут с умопомрачительной скоростью - более 400 км/час.

Химические связи

Передаваемые от нейрона к нейрону сообщения должны превращаться из электрической в химическую форму. Это связано с тем, что, несмотря на свою многочисленность, нейроны никогда не соприкасаются между собой. Но электрические импульсы не могут передаваться, если нет физического контакта. Поэтому нейроны используют для связи между собой специальную систему, называемую синапсами. В этих местах нейроны разделены узким пространством синаптической щелью. Когда электрический импульс приходит к первому нейрону, он высвобождает из синапса химические молекулы, так называемые нейромедиаторы. Эти вещества, вырабатываемые нейронами, перемещаются через синаптическую щель и попадают на специально предназначенные для них рецепторы другого нейрона. В результате возникает еще один электрический импульс.

Импульс между нейронами проходит меньше, чем за тысячную секунды.

Различие нейро-медиаторов

Мозгом вырабатывается около полусотни нейромедиаторов, которые можно подразделить на две группы. Первая состоит из тех, что инициируют возникновение нервного импульса, - их называют возбуждающими. Другие, напротив, замедляют его возникновение - это тормозящие нейромедиаторы. Стоит отметить, что в большинстве случаев нейрон выделяет только один тип нейромедиаторов. И в зависимости оттого, является ли он возбуждающим или тормозящим, нейрон по-разному воздействует на соседние нервные клетки.

Искусственная стимуляция

Отдельный нейрон или группу нейронов возможно стимулировать искусственно при помощи введенных в них электродов, направляющих электрические импульсы в точно обозначенные зоны мозга. Этот метод иногда используют в медицине, в частности для лечения больных страдающих болезнью Паркинсона Эта проявляющаяся в пожилом возрасте болезнь сопровождается дрожанием конечностей. Это дрожание может быть остановлено путем постоянной стимуляции конкретной зоны мозга.

Нейрон — микрокомпьютер

Каждый из нейронов способен принимать сотни сообщений в секунду. И, чтобы не оказаться перегруженным информацией, он должен уметь судить о степени ее значимости и делать ее предварительный анализ. Эта вычислительная деятельность происходит внутри клетки. Там складываются возбуждающие и вычитаются тормозящие импульсы. И, для того чтобы нейрон сгенерировал собственный импульс, необходимо, чтобы сумма предыдущих оказалась больше определенного значения. Если сложение возбуждающих и тормозящих импульсов не превысит этот предел, нейрон будет «молчать».

Информационные дороги

Во всем этом хитросплетении нейронов существуют прекрасно обозначенные пути. Схожие идеи, схожие воспоминания проходят, приводя всегда в действие одни и те же нейроны и синапсы. До сих пор неизвестно, как возникают и поддерживаются эти, подобные контурам электронных схем связи, но очевидно, что они существуют и что, чем они прочнее,тем они эффективнее. Часто используемые синапсы работают быстрее. Этим и объясняется то, почему мы быстрее вспоминаем вещи, которые мы видели или повторяли несколько раз. Однако эти связи возникают не навсегда. Некоторые из них могут исчезнуть, если их недостаточно использовали, а на их месте возникнуть новые. При необходимости нейроны всегда способны создавать новые связи.

Маленькие зеленые точки на фото - гормоны внутри кровеносных сосудов

Химический допинг

Когда говорят, что спортсмен использовал гормональный допинг, это значит, что он принимал гормоны либо в виде таблеток, либо вводя их непосредственно в кровь. Гормоны бывают естественными или искусственными. Самые распространенные - гормоны роста и стероиды, за счет которых мышцы становятся больше и сильнее, а также эритропоэтин - гормон, ускоряющий доставку питательных веществ к мышцам.

Мозг способен производить миллионы операций за доли секунды.

На мозг работают гормоны

Для обмена информацией мозгом используется и другой инструмент - гормоны . Эти химические соединения частично производятся самим мозгом в группе нейронов, расположенных в гипоталамусе. Эти гормоны контролируют производство иных, вырабатываемых в других частях тела в эндокринных железах. Они действуют иначе, чем нейромедиаторы, которые фиксируются непосредственно на нейронах и переносятся с кровью к отдаленным от мозга органам тела, таким как груди, яичники, мужские семенники, почки. Закрепляясь на их рецепторах, гормоны вызывают различные физиологические реакции. Они, например, способствуют росту костей и мышц, управляют чувством голода и жажды и, конечно, влияют на сексуальную активность.



Материнский капитал