Расчет вероятности объединения (логической суммы) событий. Формулы для вычисления вероятности событий

Когда бросается монета, можно сказать, что она упадет орлом вверх, или вероятность этого составляет 1/2. Конечно, это не означает того, что если монета подбрасывается 10 раз, она обязательно упадет вверх орлом 5 раз. Если монета является "честной" и если она подбрасывается много раз, то орел выпадет очень близко в половине случаев. Таким образом, существует два вида вероятностей: экспериментальная и теоретическая .

Экспериментальная и теоретическая вероятность

Если бросить монетку большое количество раз - скажем, 1000 - и посчитать, сколько раз выпадет орел, мы можем определить вероятность того, что выпадет орел. Если орел выпадет 503 раза, мы можем посчитать вероятность его выпадения:
503/1000, или 0,503.

Это экспериментальное определение вероятности. Такое определение вероятности вытекает из наблюдения и изучения данных и является довольно распространенным и очень полезным. Вот, к примеру, некоторые вероятности которые были определены экспериментально:

1. Вероятность того, что у женщины разовьется рак молочной железы составляет 1/11.

2. Если вы целуетесь, с кем-то, кто болен простудой, то вероятность того, что вы тоже заболеете простудой, составляет 0,07.

3. Человек, который только что был освобожден из тюрьмы, имеет 80% вероятности возвращения назад в тюрьму.

Если мы рассматриваем бросание монеты и беря во внимание то, что столь же вероятно, что выпадет орел или решка, мы можем вычислить вероятность выпадение орла: 1 / 2. Это теоретическое определение вероятности. Вот некоторые другие вероятности, которые были определены теоретически, с помощью математики:

1. Если находится 30 человек в комнате, вероятность того, что двое из них имеют одинаковый день рождения (исключая год), составляет 0,706.

2. Во время поездки, Вы встречаете кого-то, и в течение разговора обнаруживаете, что у вас есть общий знакомый. Типичная реакция: "Этого не может быть!". На самом деле, эта фраза не подходит, потому что вероятность такого события достаточно высока - чуть более 22%.

Таким образом, экспериментальная вероятность определяются путем наблюдения и сбора данных. Теоретические вероятности определяются путем математических рассуждений. Примеры экспериментальных и теоретических вероятностей, как например, рассмотренных выше, и особенно тех, которые мы не ожидаем, приводят нас, к ваэности изучения вероятности. Вы можете спросить: "Что такое истинная вероятность?" На самом деле, таковой нет. Экспериментально можно определить вероятности в определенных пределах. Они могут совпадать или не совпадать с вероятностями, которые мы получаем теоретически. Есть ситуации, в которых гораздо легче определить один из типов вероятности, чем другой. Например, было бы довольно найти вероятность простудиться, используя теоретическую вероятность.

Вычисление экспериментальных вероятностей

Рассмотрим сначала экспериментальное определение вероятности. Основной принцип, который мы используем для вычисления таких вероятностей, является следующим.

Принцип P (экспериментальный)

Если в опыте, в котором проводится n наблюдений, ситуация или событие Е происходит m раз за n наблюдений, то говорят, что экспериментальная вероятность события равна P (E) = m/n.

Пример 1 Социологический опрос. Было проведено экспериментальное исследование, чтобы определить количество левшей, правшей и людей, у которых обе руки развиты одинаково Результаты показаны на графике.

a) Определите вероятность того, что человек - правша.

b) Определите вероятность того, что человек - левша.

c) Определите вероятность того, что человек одинаково свободно владеет обеими руками.

d) В большинстве турниров, проводимых Профессиональной Ассоциацией Боулинга, участвуют 120 игроков. На основании данных этого эксперимента, сколько игроков могут быть левшой?

Решение

a)Число людей, являющиеся правшами, составляет 82, количество левшей составляет 17, а число тех, кто одинаково свободно владеет двумя руками - 1. Общее количество наблюдений - 100. Таким образом, вероятность того, что человек правша, есть Р
P = 82/100, или 0,82, или 82%.

b) Вероятность того, что человек левша, есть Р, где
P = 17/100, или 0,17, или 17%.

c) Вероятность того, что человек одинаково свободно владеет двумя руками составляет P, где
P = 1/100, или 0,01, или 1%.

d) 120 игроков в боулинг, и из (b) мы можем ожидать, что 17% - левши. Отсюда
17% от 120 = 0,17.120 = 20,4,
то есть мы можем ожидать, что около 20 игроков являются левшами.

Пример 2 Контроль качества . Для производителя очень важно держать качество своей продукции на высоком уровне. На самом деле, компании нанимают инспекторов контроля качества для обеспечения этого процесса. Целью является выпуск минимально возможного количества дефектных изделий. Но так как компания производит тысячи изделий каждый день, она не может позволить себе проверять каждое изделие, чтобы определить, бракованное оно или нет. Чтобы выяснить, какой процент продукции являются дефектным, компания проверяет гораздо меньше изделий.
Министерство сельского хозяйства США требует, чтобы 80% семян, которые продают производители, прорастали. Для определения качества семян, которые производит сельхозкомпания, высаживается 500 семян из тех, которые были произведены. После этого подсчитали, что 417 семян проросло.

a) Какова вероятность того, что семя прорастет?

b) Отвечают ли семена государственным стандартам?

Решение a) Мы знаем, что из 500 семян, которые были высажены, 417 проросли. Вероятность прорастания семян Р, и
P = 417/500 = 0,834, или 83.4%.

b) Так как процент проросших семян превысил 80% по требованию, семена отвечают государственным стандартам.

Пример 3 Телевизионные рейтинги. Согласно статистических данных, в Соединенных Штатах 105 500 000 домохозяйств с телевизорами. Каждую неделю, информация о просмотре передач собирается и обрабатывается. В течение одной недели 7815000 домохозяйств были настроены на популярный комедийный сериал "Все любят Реймонда" на CBS и 8302000 домохозяйств были настроены на популярный сериал «Закон и порядок» на NBC (Источник: Nielsen Media Research). Какова вероятность того, что телевизор одного дома настроен на «Everybody Loves Raymond" в течение данной недели? на «Закон и порядок»?

Решениеn Вероятность того, что телевизор в одном домохозяйстве настроен на "Все любят Реймонда" равна Р, и
P = 7,815,000/105,500,000 ≈ 0,074 ≈ 7,4%.
Возможность, что телевизор домохозяйства был настроен на «Закон и порядок» составляет P, и
P = 8,302,000/105,500,000 ≈ 0,079 ≈ 7,9%.
Эти проценты называются рейтингами.

Теоретическая вероятность

Предположим, что мы проводим эксперимент, такие, как бросание монетки ли дротиков, вытаскивание карты из колоды, или проверка изделий на качество на сборочной линии. Каждый возможный результат такого эксперимента называется исход . Множество всех возможных исходов называется пространством исходов . Событие это множество исходов, то есть подмножество пространства исходов.

Пример 4 Бросание дротиков. Предположим, что в эксперименте «метание дротиков» дротик попадает в мишень. Найдите каждое из нижеследующих:

b) Пространство исходов

Решение
a) Исходы это: попадание в черное (Ч), попадание в красное (К) и попадание в белое (Б).

b) Пространство исходов есть {попадание в черное, попадание в красное, попадание в белое}, которое может быть записано просто как {Ч, К, Б}.

Пример 5 Бросание игральных костей. Игральная кость это куб с шестью гранями, на каждой их которых нарисовано от одной до шести точек.


Предположим, что мы бросаем игральную кость. Найдите
a) Исходы
b) Пространство исходов

Решение
a) Исходы: 1, 2, 3, 4, 5, 6.
b) Пространство исходов {1, 2, 3, 4, 5, 6}.

Мы обозначаем вероятность того, что событие Е случается в качестве Р (Е). Например, "монета упадет решкой" можно обозначать H. Тогда Р (Н) представляет собой вероятность того, монета упадет решкой. Когда все исходы эксперимента имеют одинаковую вероятность появления, говорят, что они равновероятны. Чтобы увидеть различия между событиями, которые равновероятны, и неравновероятными событиями, рассмотрим мишень, изображенную ниже.

Для мишени A, события попадания в черное, красное и белое равновероятны, так как черные, красные и белые сектора - одинаковые. Однако, для мишени B зоны с этими цветами не одинаковы, то есть попадание в них не равновероятно.

Принцип P (Теоретический)

Если событие E может случиться m путями из n возможных равновероятных исходов из пространства исходов S, тогда теоретическая вероятность события, P(E) составляет
P(E) = m/n.

Пример 6 Какая вероятность выкинуть 3, бросив игральный кубик?

Решение На игральном кубике 6 равновероятных исходов и существует только одна возможность выбрасивания цифры 3. Тогда вероятность P составит P(3) = 1/6.

Пример 7 Какая вероятность выбрасывания четной цифры на игральном кубике?

Решение Событие - это выбрасывание четной цифры. Это может случиться 3 способами (если выпадет 2, 4 или 6). Число равновероятных исходов равно 6. Тогда вероятность P(четное) = 3/6, или 1/2.

Мы будем использовать ряд примеров, связанных со стандартной колодой из 52 карт. Такая колода состоит из карт, показанных на рисунке ниже.

Пример 8 Какая вероятность вытянуть туза из хорошо перемешанной колоды карт?

Решение Существует 52 исхода (количество карт в колоде), они равновероятны (если колода хорошо перемешана), и есть 4 способа вытянуть туза, поэтому согласно принципу P, вероятность
P(вытягивания туза) = 4/52, или 1/13.

Пример 9 Предположим, что мы выбираем не глядя, один шарик из мешка с 3-мя красными шариками и 4-мя зелеными шариками. Какова вероятность выбора красного шарика?

Решение Существует 7 равновероятных исходов достать любой шарик, и так как число способов вытянуть красный шарик равно 3, получим
P(выбора красного шарика) = 3/7.

Следующие утверждения - это результаты из принципа P.

Свойства вероятности

a) Если событие E не может случиться, тогда P(E) = 0.
b) Если событие E случиться непременно тогда P(E) = 1.
c) Вероятность того, что событие Е произойдет это число от 0 до 1: 0 ≤ P(E) ≤ 1.

Например, в бросании монеты, событие, когда монета упадет на ребро имеет нулевую вероятность. Вероятность того, что монета либо на орел или решку имеет вероятность 1.

Пример 10 Предположим, что вытягиваются 2 карты из колоды с 52-мя картами. Какова вероятность того, что обе из них пики?

Решение Число путей n вытягивания 2 карт из хорошо перемешанной колоды с 52 картами есть 52 C 2 . Так как 13 из 52 карт являются пиками, число способов m вытягивания 2-х пик есть 13 C 2 . Тогда,
P(вытягивания 2-х пик)= m/n = 13 C 2 / 52 C 2 = 78/1326 = 1/17.

Пример 11 Предположим, что 3 человека выбираются случайно из группы, состоящей из 6-ти мужчин и 4-х женщин. Какова вероятность того, что будут выбраны 1 мужчина и 2 женщины?

Решение Число способов выбора троих человек из группы 10 человек 10 C 3 . Один мужчина может быть выбран 6 C 1 способами, и 2 женщины могут быть выбраны 4 C 2 способами. Согласно фундаментальному принципу подсчета, число способов выбора 1-го мужчины и 2-х женщин 6 C 1 . 4 C 2 . Тогда, вероятность что будет выбраны 1-го мужчины и 2-х женщин есть
P = 6 C 1 . 4 C 2 / 10 C 3 = 3/10.

Пример 12 Бросание игральных кубиков. Какая вероятность выбрасывания в сумме 8 на двух игральных кубиках?

Решение На каждом игральном кубике есть 6 возможных исходов. Исходы удваиваются, то есть существует 6.6 или 36 возможных способа, в котором могут выпасть цифры на двух кубиках. (Лучше, если кубики разные, скажем один красный а второй голубой - это поможет визуализировать результат.)

Пары цифр, в сумме составляющие 8, показаны на рисунке внизу. Есть 5 возможных способов получения суммы, равной 8, отсюда вероятность равна 5/36.

Для вычисления вероятности Р А события А необходимо построить математическую модель изучаемого объекта, которая содержит событие А. Основой модели является вероятностное пространство (,?,Р), где - пространство элементарных событий, ? - класс событий с введенными над ними операциями композиции,

Вероятность любого события А, имеющего смысл в и входящего в класс событий? 25. Если, например,

то из аксиомы 3, вероятностей, следует, что

Таким образом, вычисление вероятности события А, сведено к вычислению вероятностей элементарных событий, его составляющих, а так как они являются «базовыми», то методы их вычисления не обязаны зависить от аксиоматики теории вероятностей.

Здесь рассмотрены три подхода к вычислению вероятностей элементарных событий:

классический;

геометрический;

статистический или частотный.

Классический метод вычисления вероятностей

Из аксиоматического определения вероятности следует, что вероятность существует для любого события А, но как ее вычислить, об этом ничего не говорится, хотя известно, что для каждого элементарного события i существует вероятность рi, такая, что сумма вероятностей всех элементарных событий пространства равна единице, то есть

На использовании этого факта основан классический метод вычисления вероятностей случайных событий, который в силу своей специфичности, дает способ нахождения вероятностей этих событий непосредственно из аксиом.

Пусть дано фиксированное вероятностное пространство (,?,Р), в котором:

  • а) состоит из конечного числа n элементарных событий,
  • б) каждому элементарному событию i поставлена в соответствие вероятность

Рассмотрим событие А, которое состоит из m элементарных событий:

тогда из аксиомы 3 вероятностей, в силу несовместности элементарных событий, следует, что

Тем самым имеем формулу

которую можно интерпретировать следующим образом: вероятность событию А произойти равна отношению числа элементарных событий, благоприятствующих появлению событию А, к числу всех элементарных событий из.

В этом суть классического метода вычисления вероятностей событий.

Замечание. Приписав одинаковую вероятность каждому из элементарных событий пространства, мы, с одной стороны, имея вероятностное пространство и опираясь на аксиомы теории вероятностей, получили правило вычисления вероятностей любых случайных событий из пространства по формуле (2), с другой стороны, это дает нам основание считать все элементарные события равновозможными и вычисление вероятностей любых случайных событий из свести к «урновой» схеме независимо от аксиом.

Из формулы (2) следует, что вероятность события А зависит только от числа элементарных событий, из которых оно состоит и не зависит от их конкретного содержания. Таким образом, чтобы воспользоваться формулой (2), необходимо найти число точек пространства и число точек, из которых состоит событие А, но тогда это уже задача комбинаторного анализа.

Рассмотрим несколько примеров.

Пример 8. В урне из n шаров - k красных и (n - k) черных. Наудачу извлекаем без возвращения r шаров. Какова вероятность того, что в выборке из r шаров s шаров - красных?

Решение. Пусть событие {А} {в выборке из r шаров s - красных}. Искомая вероятность находится по классической схеме, формула (2):

где - число возможных выборок объема r, которые различаются хотя бы одним номером шара, а m - число выборок объема r, в которых s шаров красных. Для, очевидно, число возможных вариантов выборки равно, а m, как следует из примера 7, равно

Таким образом, искомая вероятность равна

Пусть дан набор попарно несовместных событий As,

образующих полную группу, тогда

В этом случае говорят, что имеем распределение вероятностей событий As.

Распределения вероятностей является одним из фундаментальных понятий современной теории вероятностей и составляет основу аксиомами Колмагорова.

Определение. Распределение вероятностей

определяется гипергеометрическое распределение.

Боровков А.А. в своей книге на примере формулы (3) поясняет природу задач теории вероятностей и математической статистики следующим образом: зная состав генеральной совокупности, мы с помощью гипергеометрического распределения можем выяснить, каким может быть состав выборки - это типичная задача теории вероятностей (прямая задача). В естественных науках решают обратную задачу: по составу выборок, определяют природу генеральных совокупностей - это обратная задача, и она, образно говоря, составляет содержание математической статистики.

Обобщением биномиальных коэффициентов (сочетаний) являются полиномиальные коэффициенты, которые своим названием обязаны разложению полинома вида

по степеням слагаемых.

Полиномиальные коэффициенты (4) часто применяются при решении комбинаторных задач.

Теорема. Пусть имеется k различных ящиков, по которым раскладываются пронумерованные шары. Тогда число размещений шаров по ящикам так, чтобы в ящике с номером r находилось ri шаров,

определяется полиномиальными коэффициентами (4).

Доказательство. Поскольку порядок расположения ящиков важен, а шаров в ящиках - не важен, то для подсчета размещений шаров в любом ящике можно воспользоваться сочетаниями.

В первом ящике r1 шаров из n можно выбрать способами, во втором ящике r2 шаров, из оставшихся (n - r1) можно выбрать способами и так далее, в (k - 1) ящик rk-1 шаров выбираем

способами; в ящик k - оставшиеся

шаров попадают автоматически, одним способом.

Таким образом, всего размещений будет

Пример. По n ящикам случайно распределяются n шаров. Считая, что ящики и шары различимы, найти вероятности следующих событий:

  • а) все ящики не пустые = А0;
  • б) один ящик пуст = А1;
  • в) два ящика пустых = А2;
  • г) три ящика пустых = А3;
  • д) (n-1) - ящик пуст = А4.

Решить задачу для случая n = 5.

Решение. Из условия следует, что распределение шаров по ящикам есть простой случайный выбор, следовательно, всех вариантов nn.

Эта последовательность означает, что в первом, втором и третьем ящиках по три шара, в четвертом и пятом по два шара, в остальных (n - 5) ящиках по одному шару. Всего таких размещений шаров по ящикам будет

Так как шары на самом деле различимы, то на каждую такую комбинацию будем иметь

размещений шаров. Таким образом, всего вариантов будет

Переходим к решению по пунктам примера:

а) так как в каждом ящике находится по одному шару, то имеем последовательность 111…11, для которой число размещений равно n!/ n! = 1. Если шары различимы, то имеем n!/ 1! размещений, следовательно, всего вариантов m = 1n!= n!, отсюда

б) если один ящик пуст, то какой-то ящик содержит два шара, тогда имеем последовательность 211…10, для которой число размещений равно n! (n-2)!. Так как шары различимы, то для каждой такой комбинации имеем n!/ 2! размещений. Всего вариантов

в) если два ящика пусты, то имеем две последовательности: 311…100 и 221…100. Для первой число размещений равно

n!/ (2! (n - 3)!).

На каждую такую комбинацию имеем n!/ 3! размещений шаров. Итак, для первой последовательности, число вариантов равно

Для второй последовательности всего вариантов будет

Окончательно имеем

г) для трех пустых ящиков будет три последовательности: 411…1000, либо 3211…1000, либо 22211…1000.

Для первой последовательности имеем

Для второй последовательности

Для третьей последовательности получаем

Всего вариантов

m = k1 + k2 + k3,

Искомая вероятность равна

д) если (n -1) ящик пуст, то все шары должны находиться в одном из ящиков. Очевидно, что число комбинаций равно

Соответствующая этому событию вероятность равна

При n = 5, имеем

Заметим, что при n = 5 события Аi должны образовывать полную группу, что соответствует действительности. В самом деле

Чтобы увеличить свои шансы на выигрыш, игрок должен понимать принцип работы букмекерской конторы.

Коэффициенты БК представляют собой вероятность события с определенным процентом наценки (маржей), которая в разных конторах колеблется в пределах 1.5-10%. Если бы маржи не существовало, все букмекеры бы разорились за считанные часы.

Игрок должен понимать, что собой представляют коэффициенты и ставить только на выгодные для себя цены. Поэтому ему необходимо уметь преобразовывать коэффициенты в вероятности и наоборот.

Формула перевода коэффициента в процент вероятности события:

V=1/кэф*100%

Конвертация вероятности в коэффициенты высчитывается по формуле:

К=100%/вероятность

Пример

Котировки букмекерской конторы на матч между Реалом и Ливерпулем составляют:

2.25 (П1) – 3.7 (ничья) – 3.09 (П2)

Конвертируем коэффициенты у вероятности

V(П1) = 1/2.25*100%= 44.4%

V(ничья) = 1/3.7*100%= 27%

V(П2) = 1/3.09*100%= 32.4%

Складываем вероятности этого матча и получаем суммарную вероятность

V = 44.4%+27%+32.4%= 103.8%

Многие зададутся вопросом, почему вероятность составляет больше ста процентов. Ответ банально прост, все что свыше 100% является маржей БК. В нашем случае она составляет 3.8%.

Коэффициенты на равновероятные события в идеале должны составлять К(П1) = К(П2) = 2.0 (50%), однако из-за букмекерской маржи они будут занижены. Например, если наценка БК будет составлять 7%, тогда коэффициенты будут равны 1.86, если 2%, то коэффициенты будут по 1.96.

Залог успеха успешного игрока — ставить всегда по лучшим коэффициентам. У букмекерских контор работают трейдеры, которые тоже могут ошибаться в своих расчетах. Умелые игроки такими просчетами неплохо зарабатывают себе на жизнь.

Например, победу Ювентуса над Ромой букмекер оценивает вероятностью 60% (1.66), а Вы, тщательно проанализировав матч, высчитали вероятность 67% (1.49). Если Ваши расчеты верны, то букмекерская контора даёт завышенный (ценный) коэффициент на данный исход этого события. Игрок должен непременно воспользоваться этой возможностью, сделав ставку на победу Ювентуса. Такие коэффициенты называют валуйными и при долгосрочной игре они непременно принесут игроку прибыль.

Если бы Ваша вероятность составила меньше 60%, это означало бы, что букмекерская контора занизила коэффициент на этот исход. Делать ставки по явно заниженным кэфам категорически запрещается!

Чтобы находить валуйные ставки, игроку необходимо уметь правильно анализировать вероятность исхода, хотя существует множество авторитетных сервисов, предоставляющих такие услуги за определённую плату.

Хотите узнать, какие математические шансы на успех вашей ставки? Тогда для вас есть две хорошие новости. Первая: чтобы посчитать проходимость, не нужно проводить сложные расчеты и тратить большое количество времени. Достаточно воспользоваться простыми формулами, работа с которыми займёт пару минут. Вторая: после прочтения этой статьи вы с лёгкостью сможете рассчитывать вероятность прохода любой вашей сделки.

Чтобы верно определить проходимость, нужно сделать три шага:

  • Рассчитать процент вероятности исхода события по мнению букмекерской конторы;
  • Вычислить вероятность по статистическим данным самостоятельно;
  • Узнать ценность ставки, учитывая обе вероятности.

Рассмотрим подробно каждый из шагов, применяя не только формулы, но и примеры.

Быстрый переход

Подсчёт вероятности, заложенной в букмекерские коэффициенты

Первый шаг – необходимо узнать, с какой вероятностью оценивает шансы на тот или иной исход сам букмекер. Ведь понятно, что кэфы букмекерские конторы не ставят просто так. Для этого пользуемся следующей формулой:

P Б =(1/K)*100%,

где P Б – вероятность исхода по мнению букмекерской конторы;

K – коэффициент БК на исход.

Допустим, на победу лондонского Арсенала в поединке против Баварии коэффициент 4. Это значит, что вероятность его виктории БК расценивают как (1/4)*100%=25%. Или же Джокович играет против Южного. На победу Новака множитель 1.2, его шансы равны (1/1.2)*100%=83%.

Так оценивает шансы на успех каждого игрока и команды сама БК. Осуществив первый шаг, переходим ко второму.

Расчёт вероятности события игроком

Второй пункт нашего плана – собственная оценка вероятности события. Так как мы не можем учесть математически такие параметры как мотивация, игровой тонус, то воспользуемся упрощённой моделью и будем пользоваться только статистикой предыдущих встреч. Для расчёта статистической вероятности исхода применяем формулу:

P И =(УМ/М)*100%,

где P И – вероятность события по мнению игрока;

УМ – количество успешных матчей, в которых такое событие происходило;

М – общее количество матчей.

Чтобы было понятней, приведём примеры. Энди Маррей и Рафаэль Надаль сыграли между собой 14 матчей. В 6 из них был зафиксирован тотал меньше 21 по геймам, в 8 – тотал больше. Необходимо узнать вероятность того, что следующий поединок будет сыгран на тотал больше: (8/14)*100=57%. Валенсия сыграла на Месталье против Атлетико 74 матча, в которых одержала 29 побед. Вероятность победы Валенсии: (29/74)*100%=39%.

И это все мы узнаем только благодаря статистике предыдущих игр! Естественно, что на какую-то новую команду или игрока такую вероятность просчитать не получится, поэтому такая стратегия ставок подойдет только для матчей, в которых соперники встречаются не первый раз. Теперь мы умеем определять букмекерскую и собственную вероятности исходов, и у нас есть все знания, чтобы перейти к последнему шагу.

Определение ценности ставки

Ценность (валуйность) пари и проходимость имеют непосредственную связь: чем выше валуйность, тем выше шанс на проход. Рассчитывается ценность следующим образом:

V= P И *K-100%,

где V – ценность;

P И – вероятность исхода по мнению беттера;

K – коэффициент БК на исход.

Допустим, мы хотим поставить на победу Милана в матче против Ромы и подчитали, что вероятность победы «красно-черных» 45%. Букмекер предлагает нам на это исход коэффициент 2.5. Будет ли такое пари ценным? Проводим расчёты: V=45%*2.5-100%=12.5%. Отлично, перед нами ценная ставка с хорошими шансами на проход.

Возьмём другой случай. Мария Шарапова играет против Петры Квитовой. Мы хотим заключить сделку на победу Марии, вероятность которой по нашим расчетам 60%. Конторы предлагают на этот исход множитель 1.5. Определяем валуйность: V=60%*1.5-100=-10%. Как видим, ценности эта ставка не представляет и от неё следует воздержаться.

Знать, как оценить вероятность того или иного события на основе коэффициентов, крайне важно для выбора правильной ставки. Если вы не понимаете, как перевести букмекерский коэффициент в вероятность, то никогда не сможете определить, как соотносится букмекерский коэффициент с реальными шансами того, что событие состоится. Следует понимать, если вероятность события по версии букмекеров ниже, чем вероятность этого же события по вашей собственной версии, ставка на это событие будет ценной. Сравнить коэффициенты на разные события можно на сайте Odds.ru .

1.1. Типы коэффициентов

Букмекерские конторы, как правило, предлагают три типа коэффициентов – десятичный, дробный и американский. Разберем каждую из разновидностей.

1.2. Десятичные коэффициенты

Десятичные коэффициенты при умножении на размер ставки позволяют рассчитать всю сумму, которую вы получите на руки в случае выигрыша. К примеру, если вы поставили 1 доллар на коэффициент 1,80, в случае выигрыша вы получите 1 доллар 80 центов (1 доллар – возвращенная сумма ставки, 0,80 – выигрыш по ставке, он же ваша чистая прибыль).

То есть вероятность исхода, по версии букмекеров, составляет 55%.

1.3. Дробные коэффициенты

Дробные коэффициенты – наиболее традиционный вид коэффициентов. В числителе показана потенциальная сумма чистого выигрыша. В знаменателе – сумма ставки, которую нужно сделать, чтобы этот самый выигрыш получить. К примеру, коэффициент 7/2 означает, что для того, чтобы получить чистый выигрыш в размере 7 долларов, вам необходимо поставить 2 доллара.

Для того чтобы рассчитать вероятность события на основе десятичного коэффициента, следует провести простые вычисления – знаменатель разделить на сумму числителя и знаменателя. Для вышеобозначенного коэффициента 7/2 расчет будет таким:

2 / (7+2) = 2 / 9 = 0,22

То есть вероятность исхода, по версии букмекеров, составляет 22%.

1.4. Американские коэффициенты

Данный вид коэффициентов популярен в Северной Америке. На первый взгляд, они кажутся довольно сложными и непонятными, но не стоит пугаться. Понимание американских коэффициентов может вам пригодиться, например, при игре в американских казино, для понимания котировок, демонстрируемых в североамериканских спортивных трансляциях. Разберем, как оценить вероятность исхода на основе американских коэффициентов.

В первую очередь надо понимать, что американские коэффициенты бывают положительными и отрицательными. Отрицательный американский коэффициент всегда идет в формате, к примеру, «-150». Это означает, что для того, чтобы получить 100 долларов чистой прибыли (выигрыш), необходимо поставить 150 долларов.

Положительный американский коэффициент рассчитывается наоборот. К примеру, у нас есть коэффициент «+120». Это означает, что для того, чтобы получить 120 долларов чистой прибыли (выигрыш), вам необходимо поставить 100 долларов.

Расчет вероятности на основе отрицательных американских коэффициентов делается по следующей формуле:

(-(отрицательный американский коэффициент)) / ((-(отрицательный американский коэффициент)) + 100)

(-(-150)) / ((-(-150)) + 100) = 150 / (150 + 100) = 150 / 250 = 0,6

То есть вероятность события, на которое дается отрицательный американский коэффициент «-150», составляет 60%.

Теперь рассмотрим аналогичные вычисления для положительного американского коэффициента. Вероятность в этом случае рассчитывается по следующей формуле:

100 / (положительный американский коэффициент + 100)

100 / (120 + 100) = 100 / 220 = 0.45

То есть вероятность события, на которое дается положительный американский коэффициент «+120», составляет 45%.

1.5. Как переводить коэффициенты из одного формата в другой?

Умение переводить коэффициенты из одного формата в другой может впоследствии сослужить вам хорошую службу. Как ни странно, до сих пор есть конторы, в которых коэффициенты не конвертируются и показаны лишь в одном, непривычном для нас формате. Рассмотрим на примерах, как это делать. Но для начала нам надо научиться вычислять вероятность исхода на основе данного нам коэффициента.

1.6. Как на основе вероятности рассчитать десятичный коэффициент?

Здесь все очень просто. Необходимо 100 разделить на вероятность события в процентном отношении. То есть, если предполагаемая вероятность события составляет 60%, вам надо:

При предполагаемой вероятности события в 60% десятичный коэффициент будет составлять 1,66.

1.7. Как на основе вероятности рассчитать дробный коэффициент?

В данном случае необходимо 100 разделить на вероятность события и от полученного результата отнять единицу. К примеру, вероятность события составляет 40%:

(100 / 40) — 1 = 2,5 — 1 = 1,5

То есть мы получаем дробный коэффициент 1,5/1 или, для удобства счета, – 3/2.

1.8. Как на основе вероятного исхода рассчитать американский коэффициент?

Здесь многое будет зависеть от вероятности события – будет ли она более 50% или менее. Если вероятность события более 50%, то расчет будет производиться по такой формуле:

— ((вероятность) / (100 — вероятность)) * 100

Например, если вероятность события составляет 80%, то:

— (80 / (100 — 80)) * 100 = — (80 / 20) * 100 = -4 * 100 = (-400)

При предполагаемой вероятности события в 80% мы получили отрицательный американский коэффициент «-400».

Если вероятность события менее 50 процентов, то формула будет следующей:

((100 — вероятность) / вероятность) * 100

Например, если вероятность события составляет 40%, то:

((100-40) / 40) * 100 = (60 / 40) * 100 = 1,5 * 100 = 150

При предполагаемой вероятности события в 40% мы получили положительный американский коэффициент «+150».

Эти вычисления помогут вам лучше понять концепцию ставок и коэффициентов, научиться оценивать истинную стоимость той или иной ставки.



Материнский капитал