Нитрат аммония.

Длительный опыт производства и применения аммиачной се­литры показал, что при соблюдении установленных правил аммиач­ная селитра безопасна 57~66. Чистая аммиачная селитра не чувстви­тельна к толчкам, ударам или трению. Однако при определенных условиях нитрат аммония обладает взрывчатыми свойствами. На этом основании его используют и как сырье в производстве амми - ачно-селитренных взрывчатых веществ. Они взрывают только от детонатора. Взрывы чистой аммиачной селитры могут быть вы­званы в основном или воздействием детонаторов, или термическим разложением соли в замкнутом пространстве.

Взрывоопасность нитрата аммония возрастает в присутствии минеральных кислот л легко окисляющихся материалов, таких как органические вещества и некоторые металлы, особенно в порошко­образном состоянии (например, алюминий, цинк, свинец, сурьма, висмут, никель, медь, кадмий). В большинстве случаев в присут­ствии этих металлов (особенно кадмия и меди) образуется неустой­чивый, легко разлагающийся нитрит аммония.

При увеличении размера частиц и повышении влажности взры­воопасность аммиачной селитры значительно уменьшается. Влаж­ная соль, содержащая более 3% воды, не взрывает даже при взрыве детонатора 58"5Э.

При нагревании нитрат аммония начинает разлагаться согласно уравнению:

NH 4 N 03 = NH 3 + HN 03 - 41,7 ккал

Это разложение становится заметным выше 150°, но, даже при 165°, потеря в весе аммиачной селитры не превосходит 6% за сутки. При более высоких температурах нитрат аммония разлагается ин­тенсивно по следующим реакциям 67: при 200-270"

NH 4 NO 3 = N 2 0 + 2Н20 + 8,8 ккал При быстром нагревании до высокой температуры NH 4 N 03 = N 2 + 2Н20 + "/202 + 28,5 ккал

(Теплоты этих реакций даны для 18° и для газообразного состояния продуктов реакции.) Последнее уравнение соответствует взрывному разложению NH4N03. Термическое разложение NH4N03 может про­исходить одновременно по нескольким реакциям, причем одна из них может доминировать над другими. Термический распад азотной кислоты обусловливает появление в газообразных продуктах разложения аммиачной селитры N0 и NO2. По-видимому, выделяю­щиеся в результате термического распада азотной кислоты N02 и Н20 являются катализаторами дальнейшего разложения NH4NO368. Термическое разложение расплавленной аммиачной селитры уско­ряется также в присутствии соединений Сг6+, Сг3+, Сг2+ и др. 69. Та­ким образом, чистую аммиачную селитру следует безусловно от­нести к классу потенциально взрывчатых веществ.

Нитрат аммония, хранящийся в открытых складах, не взрывает­ся даже в случае сильного пожара. Пожары же аммиачной селит­ры, которые имели место в закрытых помещениях, например, в ко­рабельных трюмах, контейнерах и т. п., кончались, как правило, сильным взрывом. Предполагают, что термическое разложение ни­трата аммония при атмосферном давлении протекает иначе, чем под повышенным давлением, при котором скорость разложения мо­жет быть большей и быстро образуются большие объемы газооб­разных продуктов. Было показано 64 существование «предельного» давления (около 6 ат) после достижения которого при соответ­ствующей температуре наступает взрывное разложение аммиачной селитры.

С другой стороны, легкую воспламеняемость и взрываемость аммиачной селитры, находящейся в непроветриваемых закрытых помещениях, можно объяснить не повышением общего давления, что является вторичной причиной, а накоплением продуктов мед­ленного разложения селитры. Самопроизвольное разложение ам­миачной селитры в присутствии способных окисляться, например, органических веществ является автокаталитическнм. Такое разло­жение может привести к воспламенению и взрыву. Автокатализ вы­зывается главным образом образующейся при разложении NH4N03 двуокисью азота, а также, но в меньшей мере, водяным паром. По­следнее обстоятельство указывает на недопустимость тушения вос­пламенившейся селитры водяным паром.

Стабилизаторами, предотвращающими самопроизвольное разло­жение аммиачной селитры, могут быть вещества, связывающие образующиеся при ее разложении азотную кислоту и NO2, или вы­деляющие при взаимодействии с NH4N03 аммиак. Последний ней­трализует азотную кислоту и восстанавливает окислы азота до элементарного азота. Стабилизаторами являются, например, карб­амид (0,05-0,1% от веса селитры)70-73, карбонат кальция или маг­ния (5%), хлориды, уротропин и др.67.

Аммиачная селитра является одним из наиболее эффективных азотных удобрений. Впервые в чистом виде в качестве удобрения ее стали применять в СССР. Большое содержание азота позволяет осуществлять ее перевозки на значительные расстояния с меньшими затратами на тонну азота, чем при перевозках других азотных удо­брений (за исключением карбамида). Аммиачная селитра дешевле, чем другие азотные удобрения 74-75. Относительная стоимость азота в азотных удобрениях характеризуется следующими условными по­казателями:

TOC o "1-3" h z В аммиачной селитре................................ 1

сульфате аммония.................................. 1,3

кальциевой селитре................................ 1,5

Аммиачная селитра обладает потенциальной (физиологической) кислотностью. Физиологически нейтрализованную аммиачную се­литру получают сплавлением ее с известняком, доломитом и дру­гими материалами76. Взрывоопасность и слеживаемость аммиачной селитры сдерживали ее производство в капиталистических странах. Лишь в послевоенный период, на основе успешного опыта СССР, вначале в США, а затем и в других странах использование аммиач­ной селитры в качестве азотного удобрения получило широкое раз­витие.

Аммиачную селитру применяют для изготовления взрывчатых веществ - аммонитов (смесей аммиачной селитры с органическими материалами - древесная, жмыховая и другая мука с добавкой нн - тропродуктов), аммоналов (смесей, содержащих алюминиевый по­рошок) и др. Для этих целей выпускают водоустойчивую се­литру 77~79.

Состав аммиачной селитры приведен в табл. 89.

ТАБЛИЦА 89

Состав аммиачной селитры (в %)

Нитратного й аммиачного азота в сухом веществе в пересчете:

На NH4NO3, не менее. ............................................

На азот, не менее.........................................................

Добавок в сухом веществе:

Фосфатов (Р205), не Менее.......

Нлн нитратов Са н Mg (СаО), не менее

Влаги, ие более..................................................................

Не растворимых веществ:

В воде, не более...........................................................

В соляной кислоте, не более...............................

Гранул

В пределах 1-3 мм, не менее................................

Мельче 1 мм, не более.............................................

Жирных кислот и парафина........................................

Железа....................................................................................

Кислотность (на HNO3),Не более.............................

* Предприятиям, применяющим фосфорсодержащие добавки, разрешается вырабатывать аммиачную селитру марки В с содержанием NH4NO3Не меиеа 96К, азота ие менее 33,6Х.

При упаковке селитры температура должна быть не выше 50°.

Ее упаковывают в битумированные бумажные мешки (трех----------------

Пятнслойные), а также и в полиэтиленовые мешки80. Аммиачная селитра марки Б, используемая в сельском хозяйстве и промышлен­ности, должна быть рассыпчатой. Рассыпчатость определяют путем однократного сбрасывания любых пяти мешков с селитрой на пол плашмя с высоты 1 ж с последующим рассевом на сите 5 мм.

За время рассева селитра должна полностью пройти через сито; допускается остаток на сите отдельных комков легко измельчае­мых рукой.

Производство аммиачной селитры состоит из нейтрализации азотной кислоты газообразным аммиаком81-84 и кристаллизации продукта. Аммиак не должен содержать более 1% влаги; в нем не допускается присутствие масла.

Азотную кислоту берут концентрацией более 45% HN0385; со­держание окислов азота в ней не должно превышать 0,1 %. Для по­лучения аммиачной селитры мо­гут быть использованы также от­ходы аммиачного производства- например, аммиачная и танковые и продувочные газы, от­водимые из хранилищ жидкого аммиака и получаемые при про­дувках систем синтеза аммиака. Состав танковых газов: 45-70% 27 NH3, 55-30% H2 + N2 (со следа -

Ми метана и аргона); состав про­дувочных газов: 7,5-9% NH3, 92,5-91% H2+N2 (со следами метана и аргона). s

Кроме того, для производства аммиачной селитры используются также газы дистилляции с производства карбамида; их примерный состав: 55-57% NH3, 18-24% С02, 15-20% Н20 86.

Тепловой эффект реакции NH3(r.) + НК03(ж.) ->NH4N03 со­ставляет 35,46 ккал/г-мол. При производстве аммиачной селитры обычно применяют 45-58%-ную кислоту. В этом случае тепловой эффект реакций нейтрализации соответственно уменьшается на величину теплоты разбавления азотной кислоты водой и на вели­чину теплоты растворения аммиачной селитры (рис. 341). При ра­циональном использований выделяющегося тепла нейтрализации можно получить за счет испарения воды концентрированные рас­творы и даже плав аммиачной селитры (рис. 342)87.

В соответствии с этим различают схемы с получением раствора аммиачной селитры с последующим выпариванием его (так назы­ваемый многостадийный процесс) и с получением плава (односта­дийный или безупарочный про­цесс).

Для выбора рациональной схе­мы нейтрализации в СССР были проверены четыре принципиально различные схемы получения аммиач­ной селитры с использованием теп­ла нейтрализации88"101:

установки, работающие при атмосферном давлении (избыточное давление сокового пара 0,15- 0,2 ат);

установки с вакуум-испарите­лем;

установки, работающие под давлением, с однократным исполь­зованием тепла сокового пара;

установки, работающие под давлением, с двукратным использо­ванием тепла сокового пара (по­лучение концентрированного плава).

В промышленной практике на­шли широкое применение как наи­более эффективные установки, рабо­тающие при атмосферном давлении, с использованием тепла ней­трализации и частично установки с вакуум-испарителем.

Нитрат аммония (другие названия: азотнокислый аммоний, аммонийная селитра, аммиачная селитра) – химическое вещество, которое применяется в промышленности и сельском хозяйстве. Для земледельцев это минеральное азотное удобрение. Многие садоводы тоже начали применять такое удобрение у себя на огороде. А чтобы понять, что это такое, давайте рассмотрим состав вещества и узнаем его преимущества.

Селитры – особые азотные соединения с разными удобрительными свойствами. Наиболее известны:

  • калиевая
  • кальциевая
  • магниевая
  • натриевая
  • известково-аммонийная
  • аммиачная

Среди всех разновидностей только нитрат аммония является чистым азотным удобрением, с наибольшим содержанием азота (26-34,4 %). По этому показателю он уступает только мочевине (46%).

Нитрат аммония в гранулах крупным планом

Виды аммиачной селитры

Химикат производится с маркировкой «А» для промышленности, «Б» – для земледелия . Представляет собой светлые кристаллы. В негерметичной упаковке они быстро поглощают влагу из воздуха и уплотняются. Для сохранения качества препарат снабжают специальными добавками и формируют в виде небольших шаровидных гранул (белых или желтоватых).

Гранулированную аммиачную селитру садоводам предлагают многие фирмы: Буйские удобрения, Фаско, Фертика, Вика, БиоМастер и др. По весу фасовка бывает разная.

Иногда препарат обогащают питательными добавками: серой (Азотосульфат), микроэлементами (от «Фертики»).

Особая пористая селитра служит для изготовления взрывчатых веществ; она запрещена для свободной продажи.

Применение удобрения

Аммиачную селитру используют как источник азота для многих культурных растений: овощных, плодовых, ягодных, декоративных (в том числе горшечных), а также по сидератам и на газоне. Вносят весной и в первую половину лета. Препарат способствует активному нарастанию молодых побегов, развитию мощного листового аппарата. Сильные растения затем обильно цветут и плодоносят.
Стакан (200 мл) вмещает 240 г, спичечный коробок – 25 г, столовая ложка – 20 г, чайная ложка – 6 г.

  • Под сплошную весеннюю вспашку или перекопку подсыпают 0,5 кг на 10 кв. метров (глубина заделки 10-20 см). На плодородных землях дозу снижают в два раза. Под осеннюю перекопку не подходит.
  • Непосредственно перед посадкой гранулы добавляют в лунки и рядки, хорошо перемешивая с землёй. Дозировка: 1 ч. л. на лунку для рассады, 2 ч. л. – на погонный метр рядка (лук, земляника). При весенней высадке кустов и деревьев кладут от 20 до 200 г на посадочную яму (в зависимости от размера саженца).
  • Весной или в начале лета сухой нитрат азота можно рассыпать по поверхности земли – в плодово-ягодном саду. Дозировка: 300 г на 10 кв. метров. Делают это один раз в сезон, только перед очень сильным дождём или обильным поливом.
  • Удобрительные поливы производят раствором аммиачной селитры (20-50 г на 10 л воды – распределяют на 10 кв. метров). Наименьшую концентрацию дают овощам и цветам, среднюю – кустам, высокую – деревьям. Раствор вносят 1-2 раза в течение первой половины сезона (для комнатных, оранжерейных и тепличных растений сроки могут быть иными). После полива удобрением обязательно надо повторно пролить землю водой.

Внекорневые подкормки нитратом азота и поливы дождеванием производить не рекомендуется.


Упаковка аммиачной селитры для удобрения овощей

Сколько можно вносить нитрата аммония

  • Хилая рассада (любых культур) хорошо реагирует на однократный удобрительный полив (15-20 г на 10 л воды).
  • Картофель: 1) до посадки 3 кг на сотку или 1 ч. ложка в лунку; 2) россыпью перед окучиванием (из расчёта 100 г на 10 кв. метров) либо полив в фазе бутонизации (20 г на ведро – на 1 кв. метр).
  • Корнеплоды, лук на репку, кукуруза, зерновая фасоль: 1) 25-50 г на квадратный метр под перекопку; 2) одна жидкая подкормка в конце мая или июне (20 г на 10 л воды).
  • Капуста (кроме скороспелой): 1) в лунку 1 ч. ложка; 2) 1-2 жидкие подкормки в июне-июле (30 г на 10 л).
  • Томаты, перцы, баклажаны: 1) в лунку 1 ч. ложка; 2) 1 удобрительный полив до цветения (15-30 г на 10 л).
  • Земляника: 1) 1 ст. ложка на погонный метр при высадке; 2) полив пораньше весной (30 г на 10 л); 3) полив в начале августа (доза та же).
  • Малина: 1) при посадке 1 ст. ложка в лунку; 2) полив весной (30 г на 10 л – на 1 взрослый куст).
  • Плодовые деревья: два удобрительных полива (50 г на 10 л): сразу после цветения и потом через месяц (1 литр раствора на 1 кв. метр приствольного круга).
  • Цветы: 1) в лунки при весенней посадке (по 3-9 г); 2) 1-2 полива до цветения (25 г на 10 л).
  • Газон: 3 полива с конца апреля до середины июля (25 г на 10 л на 1 кв. метр).
  • Сидераты: предпосевное внесение и 1 удобрительный полив.
  • Огурцы, кабачки, тыквы, бахча: однократный полив только на стадии ДО цветения (30 г на 10 л).

Нитрат азота отлично растворяется, поэтому подходит для жидкого внесения через систему капельного орошения.


Потенциальный вред для огорода

Существует ряд опасностей при удобрительном применении аммиачной селитры.

  1. Ожог листьев. Не рекомендуется рассыпать гранулы по листу и зелёной траве, делать внекорневые подкормки, вносить раствор дождеванием. Лучше лить под корень или напуском.
  2. Ожог корней. Нельзя превышать дозировки. После удобрительного полива обязательно надо пролить посадки ещё раз – обычной водой (или приурочить мероприятие к дождливой погоде).
  3. Подкисление грунта. На кислых землях сразу после внесения кислотность ещё немного повышается (исследования показали, что ненадолго).
  4. Накопление нитратов в урожае. Запрещено удобрять нитратом аммония зеленные культуры (салат, лук на перо и др.), раннюю капусту, скороспелый горох. Кабачки, тыквы, огурцы, арбузы и дыни допустимо 1 раз подкормить раствором в рассадный период, не позже.

Положительные качества нитрата аммония

  1. Низкая цена.
  2. Отличная растворимость.
  3. Подкисление щелочных грунтов.
  4. Способность работать в холодной земле (весной).
  5. Потери азота в почве минимальны, не требуется глубокая заделка (в сравнении с мочевиной).
  6. Двойное действие : и быстрое, и продолжительное.
  7. Вещество содержит два азотных соединения: одно проникает в растения сразу, другое постепенно. Остальные азотные удобрения (мочевина, нитрат кальция и др.) усваиваются медленнее. Только внекорневое поглощение мочевины происходит тоже оперативно.

Мешки с нитратом аммония для использования в больших масштабах

Мочевина признаётся более полезной для внекорневых подпиток, а аммиачная селитра – для жидких корневых подкормок.

Альтернативное использование в земледелии

  • Крепкий раствор заливают в пни, и они быстро сгнивают (не требуется раскорчёвка).
  • Концентрированным раствором смачивают опилки. Так они скорее перепревают.

Смешивание с другими удобрениями

С чем можно:

  • хлористый и сернокислый калий
  • фосфоритная мука

С чем нельзя:

  • известковые вещества
  • суперфосфат

Сроки годности

Гарантированный период хранения – полгода. После вскрытия фабричной упаковки желательно использовать препарат в течение сезона, например осенью ; затем его удобрительные свойства снижаются. В герметичной таре (полиэтилен) химикат остаётся неизменным много лет. Хорошо сохраняется также в стеклянных банках с плотными капроновыми крышками. Очень важно беречь от сырости.

Меры предосторожности

Нитрат аммония имеет III класс опасности, ядом не является. Но работать с ним нужно полностью одетым, в резиновых перчатках.

  • При попадании в раны (зудящая боль), на слизистые покровы, в глаза — химикат смывают 15 минут проточной водой.
  • При (случайном) приёме внутрь могут возникнуть рвота, головокружение. Следует выпить большое количество воды, принять активированный уголь, обратиться за врачебной помощью.

Аммиачная селитра имеет потенциальную опасность для организма!


Удобрение рассады перца нитратом аммония

При определённых условиях сухое вещество способно самовозгораться и взрываться:

  1. от резкого удара
  2. от огня, искры, пепла
  3. при пожаре
  4. при соприкосновении с органикой (опилки, сухая листва, щепа и кора, хвоя, торф, преющий перегной и т.п.)
  5. при соприкосновении с сахаром, кислотами, металлическим порошком и стружкой

Правила безопасности:

  • Хранить химикат необходимо отдельно от любых других веществ.
  • Нельзя допускать его загрязнения.
  • Надо беречь от ударов. Слежавшиеся комки не разбивают, а растворяют в воде.
  • Хранилище не должно нагреваться на солнцепёке. Любые источники огня располагают не ближе 50-ти метров.
  • Упаковка ставится на бетонное, стеклянное или полиэтиленовое основание (не на доски или металл).

Во многих странах мира нитрат аммония запрещён для свободной продажи. Однако этот препарат является дешёвым и эффективным азотным удобрением. При соблюдении простых правил опасности в садоводстве он не представляет.

Аммиачная селитра (NH4NO3, другие названия – нитрат аммония, азотнокислый аммоний, аммонийная соль азотной кислоты). Основное действующее вещество – азот. Его содержится в составе удобрения от 26% (низкие сорта), до 34,4% (высшие сорта). Вторым макроэлементом классической аммиачной селитры является сера, которой в составе этого агрохимиката содержится от 3 до 14%.

Нитрат аммония, наравне с – идеальная подкормка для весеннего использования. На старте своего развития растения не стесняются потреблять азот в огромных дозах, а в тандеме с серой этот элемент особенно хорошо, и быстро усваивается. Это свойство объясняет ее присутствие в составе агрохимиката, ведь сама по себе сера – не самое питательное вещество для растительных организмов.

Физиологически это кислое удобрение, которое, в тоже время, не подкисляет почву с нормальной рН реакцией. Но если применять нитрат аммония на кислых почвах, то параллельно необходимо вносить карбонат кальция, в пропорции 0,75 г на 1 г селитры.

Аммиачная селитра нужна, в первую очередь, для активного насыщения растений азотом. Это ее главная задача, которую помогают решать дополнительно включенные в состав макро- и микроэлементы.

Цена вопроса

Нитрат аммония – экономически очень выгодный агрохимикат. Его цена составляет порядка 20-25 рублей за кг. Если учитывать, что норма внесения этой минеральной подкормки, составляет, в среднем, около 10-20 г/м кв., то на одну сотку (100 м. кв.), необходимо потратить всего 1 кг удобрения.

Даже учитывая то, что применение аммиачной селитры не слишком рационально без других минеральных туков, удобрять ею очень выгодно.

Купить нитрат аммония можно как россыпью, так и в пакетированном виде. Очень часто в магазинах, торгующими товарами для садоводов, можно встретить его разновидности с различными добавками. Они имеют более узкое применение, но, в то же время, решают конкретные задачи лучше, чем основное удобрение с широким спектром использования.

Виды аммиачной селитры

Почти всегда это удобрение выпускается с применением добавок различных элементов. Наличие такого большого ассортимента объясняется широкой географией применения аммиачной селитры, и попыткой подстроиться под потребности сельского хозяйства различных климатических зон.

  • Аммиачная простая . Это вид был разработан самым первым. Основная идея, положенная в его основу – обеспечить сельскохозяйственным культурам мощное питание азотом. Применение аммиачной селитры в агропромышленных комплексах разных стран многократно подтвердило ее высокую эффективность как оптимального стартового удобрения для большинства культивируемых в средней полосе растений. Этим видом селитры можно равновесно заменять другую популярную минеральную подкормку – карбамид (мочевину).
  • Аммиачная, марка Б . Делится на сорта, первый и второй. Отлично подходит для того, чтобы применять и хранить в домашних условиях. Продается в магазинах для садоводов, и имеет удобную расфасовку, от 1 кг. Для чего она может понадобиться дома? Для цветов, болеющих после проведенной на подоконнике зимы, для первичной подкормки рассады, которой, в условиях короткого светового дня, жизненно необходим азот.
  • Аммиачно-калийная (K2NO3) . В народе ее называют «индийской селитрой». Этот вид особенно эффектен для ранней весенней подкормки плодовых деревьев. Также идеально подходит он для предпосевного внесения, и последующих подкормок для помидор, ведь калий улучшает вкусовые качества плодов.
  • Известково-аммиачная (норвежская селитра). Бывает простая и гранулированная. Содержит кальций. Ее производство регламентируется ТУ 2181-001-77381580-2006. В состав этого агрохимиката, кроме основного, входят дополнительные вещества – калий, кальций и магний.
    Известково-аммиачная селитра характеризуется высокой прочностью гранул, не слеживается при хранении. Настораживает то, что она обрабатывается мазутом, а эта фракция живет в почве очень долго, нанося ей довольно ощутимый вред.

Известково-аммиачная марка используется, чтобы удобрять почти все культуры. Не повышает кислотность почв, хорошо усваивается. Основным плюсом является безопасность – известково-аммиачная селитра не взрывается, и поэтому возможна ее перевозка любыми видами транспорта.

  • Магний азотнокислый–водный (магниевая селитра). Формула этого вещества выглядит так: Mg(NO3)2 — H2O. Используется для овощных и бобовых культур в качестве дополнительного источника магния.
  • Кальциевая. Выпускается как в сухом, так и в жидком виде, который не надо разводить. Называется «Раствор аммонизированный нитрата кальция».
  • Пористая аммиачная селитра (ТУ 2143-635-00209023-99). А вот этот вид никогда не был удобрением, и представляет большую опасность. Его изначально применяли только для создания взрывчатых веществ.

Применение против болезней растений

Почему нитрат аммония получил такое широкое распространение в промышленном земледелие? Он не только питает почвы необходимыми макроэлементами, но и защищает растения от массы заболеваний , укрепляя их иммунитет.

Особенно это свойство актуально при усиленной эксплуатации земли или выращивания на одном участке ежегодно культур из одного класса (несоблюдение севооборота). Например, под картошку на небольших дачных участках очень многие садоводы каждый год выделяют один и тот же кусок земли. А потом удивляются, почему начинают гнить клубни, еще находящиеся в почве. Многим знакома эта проблема – подкапываешь внешне здоровый куст, а картофелины наполовину сгнили и плохо пахнут.

Продолжительное бессменное возделывание этой культуры на одном месте приводит к накоплению в верхних слоях грунта патогенных грибов в огромных количествах. Урожай снижается. Для оздоровления почвы ее обрабатывают различными обеззараживающими веществами (доступнее всего – раствор марганцовки), и вносят под весеннюю вспашку аммиачную селитру , которая помогает укрепить иммунитет растения с появления самых первых листочков. Физиологически здоровые культуры лишают грибки «дома», организм отторгает чужеродные микроспоры.

Нормы внесения

Количество применяемого удобрения при припосевном внесение напрямую зависит от качества почвы. Если необходимо подпитать уже окультуренный участок земли, то достаточно использовать около 20-30 г/м. кв. Если же подкармливаем истощенные, и малопитательные земли, то норма расхода увеличивается до 35-50 г/м. кв.

Аммиачную селитру можно использовать как подкормку при высадке рассады. Она укрепляет молодые растения, питает их необходимыми макроэлементами, и защищает от различных болезней. Этот тук используют при пересадке перцев, дынь, а также для помидор, из расчета 1 ст. ложку без горки под 1 куст.

Для последующей подкормки различных культурных растений рекомендуются следующие нормы расхода:

  • Овощи – 5–10 г/м. кв. Вносится два раза за вегетацию, в июне, до цветения, и в июле, после завязи плодов.
  • Корнеплоды – 5–7 г/м кв. Рекомендуется делать неглубокие бороздки между рядами, и насыпать туда гранулы аммиачной селитры, заглубляя их в землю на 2–3 см. Подкармливают один раз, через 3 недели после появления всходов.
  • Плодовые деревья – 15-20 г/м.кв. В сухом виде нитрат аммония для подкормки используют однократно, в начале сезона, когда появляются листья, а раствором подкармливают два–три раза за лето, под корень. Это способ помогает быстрее донести полезные вещества до корней растения, поэтому он предпочтительнее. Раствор готовят в такой пропорции – 25-30 гр. необходимо развести в 10 литрах воды.

Растворить аммиачную селитру, в отличие от многих минеральных удобрений, не составит большого труда, и процесс диффузии начинается уже при 0 °C.

Есть ли нитраты в аммиачной селитре?

Да, это нитратное удобрение. Среди широкого круга обывателей существует мнение, что нитраты – это очень вредно, и они появляются в сельскохозяйственной продукции при использовании для ее выращивания минеральных удобрений.

И это верно. Но, не на все 100%. Как всегда, недостаточная осведомленность порождает массовое заблуждение. Дело в том, что перенасытить овощи и фрукты нитратами еще на грядке могут и органические удобрения, например, привычные всем навоз и компост. Они также содержат азот, и вред при их чрезмерном применение будет ощутим, растительная продукция получит мощную начинку из нитратов.

Поэтому при применении всех видов подкормок как натуральных, так и минеральных, необходимо соблюдать рекомендованные нормы внесения. А для того чтобы нитраты не накапливались в плодах, корнеплодах и ягодах, необходимо прекращать использование любых подкормок за две недели до сбора урожая.

Производство, формула

Чтобы сделать аммиачную селитру, используют аммиак и концентрированную азотную кислоту. Формула выглядит так:

NH3+HNO3→NH4NO3+Q

Изотермическая реакция протекает с большим объемом выделяемого тепла. Лишнюю воду выпаривают, и процесс получения вещества завершается его сушкой.

На этапе производства аммиачную селитру обогащают различными элементами – кальцием, калием, магнием, для получения разных сортов.

В принципе, процесс получения этого вещества достаточно прост, настолько, что сделать это удобрение можно даже дома. Но это совершенно нецелесообразно, так как гораздо дешевле ее купить, цена невысока.

Хранение

Так как основным элементом нитрата аммония является азот, то при неправильном хранении он может улетучиться, заметно ослабив питательные свойства этого агрохимиката.

При изменении температурного режима удобрение перекристаллизуется, образуя труднорастворимые гранулы. Поэтому при хранении необходимо ограждать его от резких температурных скачков.

Аммонийная соль азотной кислоты опасна. Она может причинить большой вред, если не соблюдать условия хранения, рекомендуемые в инструкции по применению. Дело в том, что это удобрение – взрывоопасно. При нагревании выше 32,3 °C оно может взорваться. Поэтому в летнее время его необходимо хранить под навесами, или в прохладных, хорошо вентилируемых помещениях, и следить за температурой фракции.

Видео: «взрывные» свойства АС — изготовление дымовой шашки

Cтраница 1


Разложение нитрата аммония каталитически ускоряется также в присутствии соединений хрома. Наиболее реакционноспособ-ными, а потому и особенно опасными металлическими примесями являются кадмий и медь, в присутствии которых образуется неустойчивый, легко разлагающийся нитрит аммония.  

Разложение нитрата аммония каталитически ускоряется также в присутствии соединений хрома.  

Состав продуктов разложения нитрата аммония зависит от температуры реакции. При низких температурах (около 170 С) она идет по указанному уравнению. При более высоких температурах (выше 250 С) образуются другие продукты (N2, NO и др.), и появляется опасность разложения со взрывом. Однако если нагреть смесь двух солей: KNO3 и (NH4) 2SO4 в эквимолекулярных соотношениях, то при температуре плавления выделяется устойчивая струя N2O, и пропадает необходимость строго следить за температурой опыта. Поэтому для демонстрационного получения закиси азота рекомендуется брать смесь указанных солей.  

Состав продуктов разложения нитрата аммония зависит от температуры реакции. При низких температурах (около 170 С) она идет по указанному уравнению. При более высоких температурах (выше 250 С) образуются другие продукты (N2, NO и др.) и появляется опасность разложения со взрывом. Однако если нагреть смесь двух солей: KNO3 и (NH4) 2SO4 в эквимолекулярном соотношении, то при температуре плавления выделяется устойчивая струя N2O, и пропадает необходимость строго следить за температурой опыта. Поэтому для демонстрационного получения оксида азота (I) рекомендуется брать смесь указанных солей.  

Во многих работах I1 4 ] указывается на то, что разложение нитрата аммония (НА) подчиняется реакции 1-го порядка.  

Нитрит аммония интенсивно и нацело разлагается при 70 - 80 С, разложение нитрата аммония происходит при 230 - 240 С. Низкие температуры процесса обусловливают избирательность взаимодействия NH3 с iNOx и отсутствие необходимости введения дополнительных количеств NH3 на компенсацию его потерь при взаимодействии с кислородом.  

Метод позволяет определять 1 - 1000 мг / дм3 ЫН4МОз Метод основан на разложении нитрата аммония щелочью при нагревании, отгонке выделившегося при этом аммиака в раствор серной кислоты, взятой в избытке, и титровании избытка кислоты щелочью в присутствии смешанного индикатора или метилового красного.  

Молибденовые остатки выпаривают досуха в фарфоровой чашке на водяной бане и нагревают до 200 С для разложения нитрата аммония. После этого сухой остаток осторожно растирают пестиком и медленно обрабатывают при помешивании избытком раствора аммиака. Прозрачный бесцветный фильтрат подкисляют концентрированной HNO3 до слабокислой реакции. В осадок выпадает молибденовый ангидрид. Осадку дают осесть, декантируют, тщательно отсасывают и промывают малым количеством воды.  

Для очистки газа от примесей применяют такую же установку, какая описана при получении закиси азота методом разложения нитрата аммония (см. рис. 69, стр.  

Эта реакция является основной, хотя образуются небольшие количества N2 и HNO3, причем азотная кислота в определенных условиях может катализировать разложение нитрата аммония.  

Оборудование для жидких азотных удобрений, баки и трубопроводы перед ремонтом должны быть тщательно промыты и продуты , иначе может образоваться воспламеняющаяся смесь воздуха с аммиаком, опасная при сварке и резке металла, так как при высоких температурах может произойти экзотермическая и поэтому взрывоопасная реакция разложения остаточного нитрата аммония. Пролитые растворы нитрата аммония и натрия должны быть немедленно смыты, так как эти соли, как и вообще нитраты, очень опасны в пожарном отношении. При соприкосновении органического вещества, содержащего нитрат, с нагретой поверхностью, например с трубами парового отопления, может произойти мгновенное воспламенение. Деревянные полы, пропитанные нитратом аммония, под действием тепла легко загораются, а кислород, выделяющийся из нитрата, будет усиливать горение.  

Наиболее дешевым и изготовляемым в массовых масштабах является нитрат аммония. При разложении нитрата аммония в зависимости от условий, в которых протекает этот процесс, могут получаться различные продукты реакции.  

Оксид азота (I) N2O - бесцветный газ со сладковатым запахом, хорошо растворимый в воде. Его получают разложением нитрата аммония.  

Азот образует с кислородом несколько окислов. Закись азота N2O представляет собой сладковатый, бесцветный газ; получают ее разложением нитрата аммония при нагревании.  

Нитрат аммония NH4NO3, называемый также аммиачной селитрой, получается при насыщении азотной кислоты аммиаком. Эта соль легко плавится и разлагается. Разложение нитрата аммония идет с выделением теплоты, поэтому при сильном нагревании этой соли процесс может принять характер взрыва. Смесь нитрата аммония с сульфатом аммония под названием нитрат-сульфат аммоний применяют в сельском хозяйстве в качестве удобрения. В смеси с такими горючими материалами, как порошок алюминия, мука и измельченный уголь, нитрат аммония образует взрывчатые вещества, называемые аммоналами.  

осадка CaCO3 получают раствор сульфата аммония, который перерабатывают в готовый продукт выпаркой и кристаллизацией.

Данный процесс может осуществляться и газовым методом с использованием вместо карбоната аммония газообразных аммиака и СО2 по реакции

CaSO4 + 2NH3 + CO2 + H2 O = CaCO3 + (NH4 )2 SO4 .

Однако оба эти метода не нашли промышленного применения из-за низких технико-экономических показателей.

ПРОИЗВОДСТВО НИТРАТА АММОНИЯ

Свойства нитрата аммония. Нитрат аммония NH 4 NO 3 (тех-

ническое название – аммиачная или аммонийная селитра) представляет собой бесцветное кристаллическое вещество с температурой плавления 169,6°С. Он содержит 35% азота в аммонийной и нитратной формах и является безбалластным азотным удобрением. Твердый нитрат аммония в области температур от 169,6°С до –50°С существует в виде пяти полиморфных модификаций, различающихся кристаллической структурой, плотностью кристаллов и объемом кристаллической решетки. Характеристика этих модификаций представлена в табл. 23.

Таблица 23

Кристаллографические характеристики модификаций нитрата аммония

Температурная

Элементарный объем

Модификация

Вид симметрии

кристаллической

существования, °С

решетки, Å3

Кубическая

Тетрагональная

Ромбическая

Бипирамидальная

(–17)–(–50)

Тетрагональная

Каждая модификация существует в определенном интервале температур и переход одной модификации в другую сопровождается изменением структуры и объема кристаллической решетки. Эти превращения являются обратимыми и сопровождаются выделением (или поглощением тепла) и скачкообразным изменением удельного объема. При охлаждении расплава аммонийной селитры происхо-

дят последовательные превращения первой модификации во вторую, второй в третью, третей в четвертую и четвертой в пятую.

В точках перехода одной модификации в другую в образовавшихся кристаллах возникают сильные деформационные усилия, которые приводят к их разрушению. Наибольшие деформации испытывают кристаллы NH4 NO3 при последовательном превращении модификаций II → III → IV, так как элементарный объем кристаллической решетки третьей модификации примерно в два раза больше, чем второй, в то время как объемы второй и четвертой модификаций практически одинаковы. Превращение второй модификации в третью происходит при температуре 84,2°С, а третьей в четвертую – при 32,3°С. Во избежание разрушения кристаллов нитрата аммония при охлаждении возникает необходимость заменить последовательные превращения модификаций II → III → IV на метастабильное превращение второй модификации в четвертую, минуя третью. В этом случае деформации кристаллов NH4 NO3 будут минимальными, так как объем кристаллической решетки второй модификации составляет 163,7 Å3 , а четвертой – 155,4 Å3 . Для

решения этой проблемы был выполнен большой объем исследований по определению влияния различных примесей на характер и последовательность модификационных превращений нитрата аммония. Установлено, что характер и последовательность модификационных превращений зависит от содержания влаги в расплаве и примесей сульфата аммония, фосфатов аммония и нитрата магния. Так, при охлаждении плава нитрата аммония, содержащего 0,04– 0,08% Н2 О, происходит замена последовательных превращений модификаций II → III → IV на метастабильный переход II → IV, который осуществляется при температуре 50°С.

Аналогичное влияние на характер и последовательность модификационных превращений нитрата аммония оказывают примеси сульфата аммония, фосфатов аммония и нитрата магния. При содержании этих примесей в расплаве NH4 NO3 0,5–2,0% в процессе охлаждения стабилизируется переход второй модификации в четвертую, минуя третью при температуре 50°С. При наличии этих добавок содержание влаги в расплаве может быть увеличено до 0,2–0,3%.

Это свойство аммонийной селитры широко используется в промышленной практике. При производстве гранулированной аммонийной селитры в состав ее растворов перед выпаркой вводят

соответствующие добавки, выпарку растворов проводят до концентрации 99,7–99,8%, гранулирование расплава осуществляют в грануляционных башнях, а охлаждение гранул – в аппаратах с кипящим слоем до температуры 40–50°С.

Аммонийная селитра хорошо растворима в воде, причем с повышением температуры растворимость резко возрастает. Влияние температуры на растворимость NH4 NO3 характеризуется данными, представленными в табл. 24.

Таблица 24

Влияние температуры на растворимость NH4 NO3

Температура, °С

Концентрация

NH4 NO3 , %

Таким образом, при выпарке водные растворы NH4 NO3 могут быть превращены в расплав, что существенно упрощает технологию ее получения за счет исключения стадий кристаллизации из растворов, фильтрации и сушки.

Аммонийная селитра обладает высокой гигроскопичностью, которая характеризуется данными, представленными в табл. 25.

Таблица 25

Зависимость гигроскопичности аммонийной селитры от температуры

Температура, °С

Гигроскопическая

При относительной влажности воздуха выше гигроскопической точки аммонийная селитра поглощает влагу из воздуха и увлажняется. При изменении температуры происходит кристаллизация NH4 NO3 из поверхностного раствора, благодаря чему частицы NH4 NO3 сращиваются друг с другом, превращаясь из порошкообразного состояния в монолитную массу. Это явление называется слеживаемостью. Для борьбы со слеживаемостью необходима глубокая сушка продукта, упаковка во влагонепроницаемую тару и обработка поверхности частицантислеживающимигидрофобнымидобавками.

Отрицательными свойствами аммонийной селитры являются низкая термическая устойчивость, пожаро- и взрывоопасность.

Производство азотных удобрений

При нагревании выше 110°С аммонийная селитра медленно разлагается на аммиак и азотную кислоту по реакции

NH4 NO3 = NH3 + HNO3 + 144,9 кДж.

При 165°С потеря массы селитры не превышает 6 %/сут. При этом аммиак удаляется в газовую фазу, а азотная кислота накапливается в твердой и жидкой фазе и разлагается с выделением NO2 , который вступает во взаимодействие с NH4 NO3 по реакции

NH4 NO3 + 2NO2 = N2 + 2HNO3 + H2 O + 232 кДж.

Эта реакция сильно экзотермична и приводит к образованию новых порций азотной кислоты и к разогреву массы. Таким образом, азотная кислота является катализатором разложения NH4 NO3 , поэтому нельзя допускать ее накопления в массе селитры. При нагревании селитры до температуры 200–270°С протекает слабоэкзотермическая реакция

NH4 NO3 = N2 O + 2H2 O + 36,8 кДж.

При резком повышении температуры, а также под воздействием детонаторов происходит взрывное разложение селитры по уравнению

NH4 NO3 = N2 + 0,5O2 + 2H2 O +118 кДж.

Таким образом, аммонийная селитра является слабым взрывчатым веществом и на ее основе производят взрывчатые вещества – аммониты и аммонолы, представляющие собой смеси селитры с органическими веществами или с порошкообразным алюминием.

Все эти свойства необходимо учитывать при производстве аммонийной селитры, строго соблюдая технологический регламент, и не допускать нарушений правил хранения и транспортировки готового продукта.

Способы получения нитрата аммония. Основным способом получения нитрата аммония является нейтрализация азотной кислоты аммиаком по реакции

HNO3 + NH3 = NH4 NO3 + 144,9 кДж.

Сырьем для получения аммонийной селитры является азотная кислота 47–60%-ной концентрации и аммиак или аммиаксодержащие газы. В результате нейтрализации образуются водные растворы нитрата аммония, которые для получения твердого продукта

подвергаются выпарке. В процессе нейтрализации выделяется большое количество тепла, которое используется для выпарки растворов. Количество выделяющегося тепла зависит от концентрации азотной кислоты. При использовании чистых 100%-ных веществ тепловой эффект реакции составляет 144,9 кДж/моль. При использовании водных растворов азотной кислоты величина теплового эффекта уменьшается на теплоту разбавления 100%-ной азотной кислоты и теплоту растворения аммонийной селитры.

Зависимость теплоты нейтрализации от концентрации азотной кислоты представлена на рис. 38.

q , кДж на 1 моль NH4 NO3

Рис. 38. Зависимость теплоты нейтрализации от концентрации азотной кислоты

С увеличением концентрации азотной кислоты количество выделяющегося тепла на единицу объема раствора возрастает, что позволяет испарять большее количество воды и получать более концентрированные растворы аммонийной селитры.

Зависимость концентрации растворов NH4 NO3 , образующихся в нейтрализаторе при использовании теплоты нейтрализации на выпарку воды, от концентрации HNO3 приведена на рис. 39.

Представленные данные показывают, что при использовании азотной кислоты с концентрацией выше 60% и подогреве исходных реагентов до 100°С и выше количество выделяющегося тепла достаточно для полного испарения воды и получения расплава селитры, что создает предпосылки для организации безупарочного

Производство азотных удобрений

процесса производства аммонийной селитры. Однако в этих условиях в реакционной зоне развиваются температуры выше 200°С, что приводит к разложению азотной кислоты и селитры, а также к потерям связанного азота. Поэтому безупарочные процессы практически не используются.

CNH 4 NO 3 , %

CHNO 3 , %

Рис. 39. Зависимость концентрации растворов NH4 NO3 от концентрации азотной кислоты:

1 – температура компонентов 70°С;

2 – температура компонентов 20°С; 3 – без использования теплоты реакции

Отвод теплоты нейтрализации из реакционной зоны необходим не только для выпарки раствора, но и с целью предотвращения чрезмерного повышения температуры. Для решения этой проблемы был разработан реактор-нейтрализатор типа ИТН (использователь теплоты нейтрализации), в котором нейтрализация азотной кислоты осуществляется под атмосферным давлением в режиме кипения раствора. Конструкция аппарата ИТН представлена на рис. 40.

HNO3

Рис. 40. Аппарат ИТН:

1 – корпус аппарата;2 – реакционный стакан;3 – барботер азотной кислоты;4 – барботер аммиака;

5 – циркуляционные окна;6 – завихритель;

7 – гидрозатвор;8 – сепаратор;

9 – штуцер сокового пара

Аппарат ИТН представляет собой цилиндрический сосуд 1 , в котором установлен реакционный стакан2 . Азотная кислота и аммиак подаются в барботеры3 и4 , расположенные друг над другом. Барботеры обеспечивают встречную подачу реагентов в диспергированном состоянии.

При соприкосновении азотной кислоты с аммиаком происходит мгновенная реакция нейтрализации, сопровождающаяся большим выделением тепла. В результате этого раствор селитры

Производство азотных удобрений

вскипает, в нем образуются пузырьки пара, создающие большую подъемную силу, под действием которой раствор селитры поднимается вверх и через крышку-завихритель 6 попадает в сепарационное пространство, где происходит отделение сокового пара от раствора. Раствор селитры по зазору между корпусом аппарата и реакционным стаканом опускается вниз и засасывается через отверстия5 внутрь реакционного стакана, благодаря чему осуществляется интенсивная циркуляция раствора. Часть нейтрализованного раствора непрерывно выводится из аппарата ИТН через гидрозатвор7 и сепаратор8 и направляется на выпарку. Соковый пар под давлением 15–20 кПа выводится через штуцеры9 . Разработанный аппарат позволяет осуществлять процесс нейтрализации непрерывно в режиме кипения с максимальным использованием теплоты нейтрализации на выпарку воды, не опасаясь перегрева реакционной массы. С целью уменьшения потерь связанного азота с соковым паром процесс нейтрализации проводят с избытком азотной кислоты (2–3 г/л), так как давление паров HNO3 над раствором NH4 NO3 при ее избытке будет значительно меньше, чем давление паров NH3 при избытке аммиака. При нейтрализации 47– 49%-ной азотной кислоты в аппарате ИТН получают раствор NH4 NO3 с концентрацией 62–65%. При использовании 54–57%-ной HNO3 концентрация раствора NH4 NO3 возрастает до 72–80%, а при концентрации HNO3 58–60% образуется раствор NH4 NO3 c концентрацией 89–92%. При этом температура сокового пара составляет соответственно 120, 130 и 160°С. Это позволяет использовать соковый пар в качестве греющего агента при выпарке раствора NH4 NO3 в вакуум-выпарных аппаратах, благодаря чему достигается двукратное использование теплоты нейтрализации на выпарку воды.

Технологическая схема нейтрализации азотной кислоты с двукратным использованием теплоты нейтрализации представлена на рис. 41. По этой схеме азотная кислота с концентрацией 47– 54% поступает в напорный бак 1 , откуда через автоматический регулятор расхода направляется в аппарат ИТН4 .

Газообразный аммиак под давлением 200–300 кПа проходит сепаратор3 и подогреватель2 для предотвращения попадания в нейтрализатор жидкого аммиака и направляется в аппарат ИТН4 . Расход аммиака автоматически регулируется по величине рН раствора NH4 NO3 на выходе из нейтрализатора так, чтобы

концентрация HNO3 в нейтрализованном растворе составляла 2–3 г/л. Нейтрализованный раствор направляется на выпарку в ва- куум-выпарной аппарат6 , где в качестве греющего агента используется соковый пар. Соковый пар на выходе из аппарата ИТН загрязнен брызгами раствора аммонийной селитры, аммиаком или парами азотной кислоты. Поэтому он подвергается очистке в промывателе5 с тремя ситчатыми тарелками, на которых уложены змеевики, охлаждаемые водой. При этом часть сокового пара конденсируется и на тарелках создается слой конденсата, барботируя через который соковый пар очищается от примесей. После выпарки в вакуум-выпарном аппарате концентрация раствора NH4 NO3 возрастает до 82–92%, после чего он направляется на окончательную выпарку до состояния плава с концентрацией 99,7–99,8%, которая осуществляется свежим паром. Перед окончательной выпаркой раствор NH4 NO3 проходит донейтрализатор7 , где осуществляется полная нейтрализация HNO3 аммиаком и поддерживается избыток аммиака 0,1 г/л, так как на стадии окончательной выпарки наличие свободной азотной кислоты недопустимо.

Соковый пар

к конденсатору

HNO3

Конденсат

Конденсат

NH4 NO3 на

доупаривание

NH4 NO3

Рис. 41. Схема нейтрализации азотной кислоты

с двукратным использованием теплоты нейтрализации:

1 – напорный бак азотной кислоты; 2 – подогреватель аммиака;3 – сепаратор;4 – аппарат ИТН;5 – промыватель сокового пара;6 – вакуум-выпарной аппарат;7 – донейтрализатор

Производство азотных удобрений

Описанная схема используется в том случае, если концентрация азотной кислоты не превышает 54%.

В современных схемах производства аммонийной селитры используется азотная кислота с концентрацией 58–60%. При этом

в аппарате ИТН образуется раствор NH 4 NO3 с концентрацией 89– 92%, поэтому использовать соковый пар для окончательной выпарки раствора невозможно, после очистки он выбрасывается в атмосферу. Использовать соковый пар в качестве греющего агента

в других производствах также не представляется возможным, так

как он загрязнен брызгами раствора NH4 NO3 и парами азотной кислоты, что приводит к коррозии оборудования.

При использовании в качестве нейтрализующего агента не 100%-ного аммиака, а аммиаксодержащих газов соковый пар содержит большое количество неконденсирующихся инертных газов, поэтому применение его в качестве греющего агента также невозможно, после очистки от примесей он тоже выбрасывается в атмосферу.

Выпарка растворов аммонийной селитры. Для получения высококачественной аммонийной селитры на стадии выпарки необходимо добиться полного испарения воды так, чтобы остаточное содержание влаги в расплаве не превышало 0,2–0,3%. Эта задача не может быть решена в выпарных аппаратах с восходящей пленкой, так как в них упариваемый раствор и образовавшийся вторичный пар движутся прямотоком в виде парожидкосной смеси, имеющей кольцевую структуру: сплошная жидкая пленка на стенках труб (восходящая пленка), а в центре паровой «стержень», несущий большое количество брызг. По мере движения парожидкосной смеси по высоте труб происходит выравнивание концен-

траций NH4 NO3 в паровой и жидкой фазе, поэтому движущаяся сила процесса уменьшается.

Для полного испарения воды необходимо обеспечить более организованное протекание массобмена при выпарке, что может быть достигнуто в выпарных аппаратах с падающей пленкой и противоточным движением жидкой и паровой фаз.

Для решения этой задачи разработана конструкция комбинированного выпарного аппарата, работающего под атмосферным давлением (рис. 42).

Комбинированный выпарной аппарат состоит из трех частей: очистной I, трубчатой II и концентрационной III.

Паровоздушная смесь

20%-ный раствор

Конденсат

NH4 NO3

NH4 NO3 4

NH4 NO3 Пар

Конденсат

Конденсат

Рис. 42. Комбинированный выпарной аппарат: I – очистная часть; II – трубчатая часть;

III – концентрационная часть; 1 – сетчатый отбойник;2 – штуцер для ввода конденсата;3 – очистные тарелки;4 ,5 – змеевики;6 – ситчатые провальные тарелки

Раствор аммонийной селитры с концентрацией не ниже 87% по обогреваемому коллектору поступает в трубчатую часть выпарного аппарата и стекает вниз по трубкам в виде тонкой пленки. В межтрубное пространство подается водяной пар под давлением 1,4 МПа и с температурой 180–185°С. В трубчатой части концентрация раствора возрастает до 99%. Для окончательного испарения воды плав NH4 NO3 поступает в нижнюю концентрационную

Производство азотных удобрений

часть аппарата, где установлено пять ситчатых тарелок провального типа. Под нижнюю тарелку вентилятором нагнетается воздух, нагретый в теплообменнике до 185°С. Горячий воздух барботирует через слой расплава на тарелках, захватывает влагу и попадает в трубчатую часть, где поднимается вверх противотоком стекающему раствору.

В концентрационной части образуется плав, содержащий 99,7–99,8% NH4 NO3 , который направляется на гранулирование. Паровоздушная смесь из трубчатой части аппарата содержит большое количество брызг раствора селитры, пары азотной кислоты и аммиак, поэтому она направляется на очистную часть аппарата, в которой установлено две-три ситчатые тарелки. На верхнюю тарелку подается паровой конденсат, а с нижней тарелки отводится раствор NH4 NO3 с концентрацией ~20%, который подается на выпарку. Очищенная паровоздушная смесь выбрасывается в атмосферу. Описанные аппараты имеют производительность от 15 до 60 т/ч, работают стабильно и позволяют получать плав селитры с остаточным содержанием влаги 0,2–0,3%.

Во избежание возникновения аварийных ситуаций при выпарке нельзя допускать повышения температуры в трубчатой и концентрационной частях выше 180°С.

Гранулирование плава аммонийной селитры. В настоящее время все минеральные удобрения выпускаются только в гранулированном виде с размером гранул от 1 до 4 мм. Основным промышленным методом гранулирования аммонийной селитры является разбрызгивание плава NH 4 NO 3 в виде мелких капель навстречу потоку охлаждающего воздуха в грануляционных башнях различной конструкции. Схема процесса гранулирования представлена на рис. 43.

Плав аммонийной селитры, содержащий 99,5–99,7% NH4 NO3 , с температурой 175–180°С из выпарного аппарата поступает в буферный бак1 , фильтруется от механических примесей в фильтрах2 , после чего с помощью коллектора3 направляется в грануляторы4 , установленные в верхней части башни5 и разбрызгивающие плав в виде мелких капель. Башня имеет цилиндрическую или прямоугольную форму и конусное разгрузочное днище. Наибольшее применение получили круглые железобетонные башни диаметром 12–16 м и высотой 30–35 м, а также металлические башни прямоугольного сечения с размером в плане 11×8 м и высотой 50 м.

Через башни с помощью хвостовых вентиляторов просасывается охлаждающий воздух со скоростью 1,5–2,0 м/с.

NH4 NO3

Воздух 3

Рис. 43. Схема процесса гранулирования: 1 – буферный бак;2 – фильтры плава;3 – коллектор-распределитель плава;

4 – грануляторы;5 – грануляционная башня

Основными аппаратами, определяющими форму и размер получаемых гранул, являются грануляторы. В современных схемах производства гранулированной аммонийной селитры используются статические грануляторы леечного и трубчатого типа, конструкция которых представлена на рис. 44.

Принцип действия леечного гранулятора заключается в следующем. Плав из коллектора поступает в гранулятор по патрубку 1 , проходит направляющий конус2 и сетчатый фильтр3 , затем разбрызгивается с помощью перфорированного донышка5 с диаметром отверстий ~1 мм.

Производство азотных удобрений

А Пар

Конденсат 3

Конденсат

Рис. 44. Типы статических грануляторов: а – леечный:1 – патрубок для подачи плава;

2 – направляющий конус;3 – корпус гранулятора;4 – сетчатый фильтр;5 – перфорированное днище;б – трубчатый с внешним обогревом:1 – изоляция;2 – корпус гранулятора;3 – обогревающая труба;

в – трубчатый с внутренним обогревом:1 – изоляция;2 – корпус гранулятора;3 – греющая труба;4 – патрубок для подвода пара

Под действием силы тяжести плав вытекает из отверстий в виде струй. Вытекающие струи приобретают волновой характер, амплитуда которого быстро нарастает, и струя распадается на капли диаметром 2–3 мм, которые падают вниз навстречу охлаждающему воздуху. За время полета по высоте башни капли расплава кристаллизуются и охлаждаются до температуры 90–125°С. Окончательное охлаждение гранул до температуры 40–45°С осуществляется воздухом в аппаратах с кипящим слоем, расположенным в нижней части грануляционных башен.

Температура охлаждения гранул в кипящем слое определяется температурой фазового перехода второй кристаллической модификации в четвертую, которая в присутствии кондиционирующих добавок происходит при 50°С.

Для уменьшения слеживаемости охлажденные гранулы подвергаются поверхностной обработке антислеживающими добавками, в качестве которых используются высокомолекулярные органические соединения гетерополярной структуры – органические кислоты и их соли, органические амины с длиной углеводородного радикала С12 –С20 . Механизм действия этих добавок заключается в том, что они адсорбируются на поверхности гранул полярной головкой, а аполярный углеводородный радикал обволакивает поверхность гранул тонкой пленкой и делает ее гидрофобной. Поверхностная обработка гранул осуществляется во вращающихся барабанах путем напыления водных растворов ПАВ на поверхность гранул с помощью форсунок. Расход ПАВ составляет 300– 500 г/т продукта.

Технологическая схема производства аммонийной селитры.

Аппаратурно-технологическое оформление производства аммонийной селитры зависит от концентрации применяемой азотной кислоты. В старых схемах, использующих азотную кислоту с концентрацией 47–49%, нейтрализация кислоты осуществлялась в аппаратах ИТН, а выпарка растворов производилась в три ступени с использованием на первой стадии в качестве греющего агента сокового пара из аппарата ИТН. Схема была весьма громоздкой, а единичная мощность установки составля-

ла 150–250 тыс. т/год.

В 60–70-х гг. XX в. были разработаны и внедрены в промышленную практику крупнотоннажные агрегаты синтеза аммиака и азотной кислоты, позволяющие повысить концентрацию получае-

Производство азотных удобрений

мой азотной кислоты до 58–60%. Это создало благоприятные предпосылки для разработки крупнотоннажных агрегатов производства аммонийной селитры АС-67 и АС-72 с единичной мощностью 450–500 тыс. т/г. При разработке и внедрении этих агрегатов были учтены последние достижения науки и техники в области повышения качества аммонийной селитры, что позволило выпускать практически неслеживающийся продукт с минимальным загрязнением окружающей среды. В обоих агрегатах в качестве исходного сырья используется азотная кислота с концентрацией 58– 60%, выпарка растворов осуществляется в одну ступень в комбинированных выпарных аппаратах. Для повышения качества продукта предусмотрено введение в его состав кондиционирующих добавок, а для уменьшения загрязнения окружающей среды – глубокая очистка промышленных выбросов. Эти агрегаты отличаются друг от друга только компоновкой оборудования. Наиболее совершенным из них является агрегат АС-72, технологическая схема которого представлена на рис. 45.

Раствор азотной кислоты с концентрацией 58–60% подогревается соковым паром в подогревателе1 до температуры 70–80°С, смешивается с кондиционирующими добавками (серной и фосфорной кислотой) и направляется в аппарат ИТН-72 3 . Газообразный аммиак подогревается в подогревателе2 до температуры 120– 130°С и также направляется в аппарат ИТН, где происходит нейтрализация азотной кислоты при температуре 155–165°С. Образовавшийся раствор нитрата аммония с концентрацией NH4 NO3 89– 92% и концентрацией HNO3 2–5 г/л подвергается донейтрализации аммиаком в донейтрализаторе5 и направляется в комбинированный выпарной аппарат6 , в нижнюю часть которого при помощи воздуходувки27 подается воздух, подогретый в подогревателе4 до 185°С. В комбинированном выпарном аппарате осуществляется полное испарение воды с получением плава селитры, содержащего

99,7–99,8% NH4 NO3 .

Плав нитрата аммония проходит донейтрализатор 7 , фильтры8 и поступает в бак9 , откуда погружным насосом10 перекачивается в напорный бак13 , установленный наверху грануляционной башни18 . Из напорного бака13 плав поступает в три леечных виброгранулятора14 , установленных в верхней части прямоугольной (8×11 м) грануляционной башни18 высотой 50–55 м.

Рис. 45. Схема производства аммиачной селитры в агрегате АС-72:

1 – подогреватель азотной кислоты;2 – подогреватель аммиака;3 – аппарат ИТН;4 – подогреватель воздуха;5 ,7 – донейтрализатор;6 – комбинированный выпарной аппарат;8 – фильтр плава;9 – бак плава;

10 – погружной насос;11 – насос;12 – сборник раствора NH4 NO3 ;13 – напорный бак плава;14 ,15 – грануляторы;16 – хвостовой вентилятор;17 – промывные скрубберы;18 – грануляционная башня;19 – кондиционер гранул;20 – транспортер;21 – элеватор;22 – охладитель гранул;23 – подогреватели воздуха;24 – вентиляторы;

25 – дренажный сборник плава;26 – насос;27 – воздуходувка;28 – буферная емкость

Производство азотных удобрений

Охлаждающий воздух в количестве 500 тыс. м3 /ч засасывается в башню через зазоры в конической части башни с помощью хвостовых вентиляторов16 и после очитки от пыли в скрубберах17 выбрасывается в атмосферу. За время полета гранулы охлаждаются до 90–120°С. Гранулированный нитрат аммония из грануляционной башни конвейером20 подается в выносной охладитель кипящего слоя22 , состоящий из трех секций с независимой подачей воздуха в каждую секцию с помощью вентиляторов24 . В каждой секции предусмотрено регулирование температуры охлаждающего воздуха с помощью теплообменников23 .

Охлажденные гранулы с помощью элеватора 21 поступают во вращающийся барабан19 , где с помощью форсунок опрыскиваются антислеживающими добавками. Обработанные гранулы нитрата аммония подаются на упаковку.

В агрегате АС-72 установлено два аппарата ИТН-72 производительностью по готовому продукту 30 т/ч каждый. Аппараты состоят из реакционной и сепарационной частей. Диаметр реакционной части составляет 1,6 м; диаметр реакционного стакана – 1,2 м; высота – 4,2 м; диаметр сепарационной части – 3,8 м; общая высота аппарата – 10 м. В сепарационной части установлены четыре колпачковые тарелки и брызгоуловитель. На верхнюю тарелку подается конденсат сокового пара, на вторую снизу – 20–25%-ный кислый раствор NH4 NO3 , образующийся в промывном скруббере17 . В сепарационной части осуществляется очистка сокового пара от аммиака, брызг раствора NH4 NO3 и азотной кислоты. Окончательная очистка сокового пара осуществляется в скрубберах17 , установленных в верхней части грануляционной башни.

Комбинированный выпарной аппарат имеет производительность 60 т/ч. Он состоит из трех частей – трубчатой, концентрационной и сепарационной. Диаметр трубчатой части 2,8 м; высота – 6,4 м, поверхность теплообмена – 710 м2 ; диаметр концентрационной части – 2,8 м; высота – 6 м. В концентрационной части установлено пять ситчатых тарелок, обогреваемых глухим паром. Под нижнюю тарелку нагнетается горячий воздух с температурой 185°С.

Верхняя очистная часть имеет диаметр 3,8 м и высоту 3,5 м. В ней установлены две ситчатые тарелки, которые орошаются па-

ровым конденсатом и раствором NH4 NO3 из скрубберов17 . В сепарационной части происходит предварительная очистка паровоздушной смеси от брызг раствора NH4 NO3 , аммиака и паров азотной кислоты. Окончательная очистка происходит в скрубберах17 совместно с запыленным воздухом, выделяющимся из грануляционных башен. Все технологическое оборудование изготавливается из стали марки 08Х22Н6Т.

Производство аммонийной селитры оказывает минимальное техногенное воздействие на окружающую среду. Твердые и жидкие отходы в этом производстве отсутствуют. Единственным источником загрязнениям окружающей среды являются газообразные отходы – соковый пар из аппаратов ИТН, паровоздушная смесь из комбинированного выпарного аппарата и охлаждающий воздух из грануляционных башен. Они содержат в своем составе брызги раствора NH4 NO3 , пары азотной кислоты, аммиак, пыль и аэрозольные частицы NH4 NO3 . Объем этих отходов весьма велик. Так, количество воздуха, подаваемого в выпарной аппарат, составляет 25 тыс. м3 /ч, в грануляционную башню – 500–550 тыс. м3 /ч.

Поэтому основным способом очистки выхлопных газов является абсорбционный способ, основанный на поглощении вредных примесей водой или слабыми растворами NH4 NO3 . Соковый пар и паровоздушная смесь проходят предварительную очистку в сепарационных частях аппарата ИТН и выпарного аппарата, после чего объединяются с отработанным воздухом, выходящим из грануляционной башни, и направляются в промывные скрубберы17 , которые орошаются паровым конденсатом. Образовавшийся слабый раствор NH4 NO3 собирается в сборниках12 и циркуляционными насосами11 возвращается на орошение скрубберов.

Часть этого раствора подается на орошение в сепарационные части аппарата ИТН и выпарного аппарата, а затем на выпарку. С учетом большого объема отходящих газов в верхней части башни установлено шесть промывных скрубберов, снабженных хвостовыми вентиляторами, которые просасывают воздух через грануляционную башню.

Для более глубокой очистки отходящих газов от аэрозолей в современных схемах дополнительно устанавливаются тонковолокнистые фильтры. После такой очистки отходящие газы выбрасываются в атмосферу.



Планирование беременности