Понятие окислителя и восстановителя. Окислитель - это атом, принимающий электроны Если элемент отдает электроны то он

Окислитель и восстановитель используют для составления реакции в органической и неорганической химии. Рассмотрим основные характеристики таких взаимодействий, выявим алгоритм составления уравнения и расстановки коэффициентов.

Определения

Окислитель - это атом либо ион, который при взаимодействии с другими элементами принимает электроны. Процесс принятия электронов называют восстановлением, и связан он с понижением степени окисления.

В курсе неорганической химии рассматривается два основных метода расстановки коэффициентов. Восстановитель и окислитель в реакциях определяют путем составления электронного баланса либо методом полуреакций. Подробнее остановимся на первом способе расставления коэффициентов в ОВР.

Степени окисления

Прежде чем определять окислитель в реакции, нужно расставить степени окисления у всех элементов в веществах, участвующих в превращении. Она представляет собой заряд атома элемента, вычисленный по определенным правилам. В сложных веществах сумма всех положительных и отрицательных степеней окисления должна быть равна нулю. Для металлов главных подгрупп она соответствует валентности и имеет положительную величину.

Для неметаллов, которые в формуле располагаются в конце, степень определяется путем вычитания из восьми номера группы и имеет отрицательное значение.

У простых веществ она равна нулю, так как не наблюдается процесса принятия или отдачи электронов.

У сложных соединений, состоящих из нескольких химических элементов, для определения степеней окисления используют математические вычисления.

Итак, окислитель - это атом, который в процессе взаимодействия понижает свою степень окисления, а восстановитель, напротив, повышает ее значение.

Примеры ОВР

Основной особенностью заданий, связанных с расстановкой коэффициентов в окислительно-восстановительных реакциях, является определение пропущенных веществ и составление их формул. Окислитель - это элемент, который будет принимать электроны, но помимо него в реакции должен участвовать и восстановитель, отдающий их.

Приведем обобщенный алгоритм, по которому можно выполнять задания, предлагаемые выпускникам старшей школы на едином государственном экзамене. Рассмотрим несколько конкретных примеров, чтобы понять, что окислитель - это не только элемент в сложном веществе, но и простое вещество.

Сначала необходимо расставить у каждого элемента значения степеней окисления, используя определенные правила.

Далее нужно проанализировать элементы, которые не участвовали в образовании веществ, и составить для них формулы. После того как все пропуски будут ликвидированы, можно переходить к процессу составления электронного баланса между окислителем и восстановителем. Полученные коэффициенты ставят в уравнение, при необходимости добавляя их перед теми веществами, которые не вошли в баланс.

Например, пользуясь методом электронного баланса, необходимо завершить предложенное уравнение, расставить перед формулами необходимые коэффициенты.

H 2 O 2 + H 2 SO 4 +KMnO 4 = MnSO 4 + O 2 + …+…

Для начала у каждого определим значения степеней окисления, получим

H 2+ O 2 - + H 2+ S +6 O 4 -2 +K + Mn +7 O 4 -2 = Mn +2 S +6 O 4 -2 + O 2 0 + …+…

В предложенной схеме они меняются у кислорода, а также у марганца в перманганате калия. Таким образом, восстановитель и окислитель нами найдены. В правой части отсутствует вещество, в котором бы был калий, поэтому вместо пропусков составим формулу его сульфата.

Последним действием в данном задании будет расстановка коэффициентов.

5H 2 O 2 + 3H 2 SO 4 +2KMnO 4 = 2Mn SO 4 + 5O 2 + 8H 2 O + K 2 SO 4

В качестве сильных окислителей можно рассмотреть кислоты, перманганат калия, перекись водорода. Все металлы проявляют восстановительные свойства, превращаясь в реакции в катионы, имеющие положительный заряд.

Заключение

Процессы, касающиеся принятия и отдачи отрицательных электронов, происходят не только в неорганической химии. Обмен веществ, который осуществляется в живых организмах, является наглядным вариантом протекания окислительно-восстановительных реакций в органической химии. Это подтверждает значимость рассмотренных процессов, их актуальность для живой и неживой природы.

8. Классификация химических реакций. ОВР. Электролиз

8.3. Окислительно-восстановительные реакции: общие положения

Окислительно-восстановительными реакциями ( ОВР ) называются реакции, протекающие с изменением степени окисления атомов элементов. В результате этих реакций одни атомы отдают электроны, а другие их принимают.

Восстановитель - атом, ион, молекула или ФЕ, отдающий электроны, окислитель - атом, ион, молекула или ФЕ, принимающий электроны:

Процесс отдачи электронов называется окислением , а процесс принятия - восстановлением . В ОВР обязательно должны быть вещество восстановитель и вещество окислитель. Нет процесса окисления без процесса восстановления и нет процесса восстановления без процесса окисления.

Восстановитель отдает электроны и окисляется, а окислитель принимает электроны и восстанавливается

Процесс восстановления сопровождается понижением степени окисления атомов, а процесс окисления - повышением степени окисления атомов элементов. Сказанное удобно проиллюстрировать схемой (СО - степень окисления):


Конкретные примеры процессов окисления и восстановления (схемы электронного баланса) приведены в табл. 8.1.

Таблица 8.1

Примеры схем электронного баланса

Схема электронного баланса Характеристика процесса
Процесс окисления
Атом кальция отдает электроны, повышает степень окисления, является восстановителем
Ион Cr +2 отдает электроны, повышает степень окисления, является восстановителем
Молекула хлора отдает электроны, атомы хлора повышают степень окисления от 0 до +1, хлор - восстановитель
Процесс восстановления
Атом углерода принимает электроны, понижает степень окисления, является окислителем
Молекула кислорода принимает электроны, атомы кислорода понижают степень окисления от 0 до −2, молекула кислорода является окислителем
Ион принимает электроны, понижает степень окисления, является окислителем

Важнейшие восстановители : простые вещества металлы; водород; углерод в форме кокса; оксид углерода(II); соединения, содержащие атомы в низшей степени окисления (гидриды металлов , , сульфиды , иодиды , аммиак ); самый сильный восстановитель - электрический ток на катоде.

Важнейшие окислители : простые вещества - галогены, кислород, озон; концентрированная серная кислота; азотная кислота; ряд солей (KClO 3 , KMnO 4 , K 2 Cr 2 O 7); пероксид водорода H 2 O 2 ; наиболее сильный окислитель - электрический ток на аноде.

По периоду окислительные свойства атомов и простых веществ усиливаются: фтор - самый сильный окислитель из всех простых веществ . В каждом периоде галогены образуют простые вещества с наиболее выраженными окислительными свойствами.

В группах А сверху вниз окислительные свойства атомов и простых веществ ослабевают, а восстановительные - усиливаются.

Для однотипных атомов восстановительные свойства усиливаются с увеличением их радиуса; например, восстановительные свойства аниона
I − выражены сильнее, чем аниона Cl − .

Для металлов окислительно-восстановительные свойства простых веществ и ионов в водном растворе определяются положением металла в электрохимическом ряду: слева направо (сверху вниз) восстановительные свойства простых металлов ослабевают: самый сильный восстановитель - литий .

Для ионов металлов в водном растворе слева направо в этом же ряду соответственно окислительные свойства усиливаются: наиболее сильный окислитель - ионы Au 3 + .

Для расстановки коэффициентов в ОВР можно пользоваться способом, основанным на составлении схем процессов окисления и восстановления. Этот способ называется методом электронного баланса .

Суть метода электронного баланса состоит в следующем.

1. Составляют схему реакции и определяют элементы, которые изменили степень окисления.

2. Составляют электронные уравнения полуреакций восстановления и окисления.

3. Поскольку число электронов, отданных восстановителем, должно быть равно числу электронов, принятых окислителем, методом наименьшего общего кратного (НОК) находят дополнительные множители.

4. Дополнительные множители проставляют перед формулами соответствующих веществ (коэффициент 1 опускается).

5. Уравнивают числа атомов тех элементов, которые не изменили степень окисления (вначале - водород по воде, а затем - числа атомов кислорода).

Пример составления уравнения окислительно-восстановительной реакции

методом электронного баланса.

Находим, что атомы углерода и серы изменили степень окисления. Составляем уравнения полуреакций восстановления и окисления:

Для этого случая НОК равно 4, а дополнительными множителями будут 1 (для углерода) и 2 (для серной кислоты).

Найденные дополнительные множители проставляем в левой и правой частях схемы реакции перед формулами веществ, содержащих углерод и серу:

C + 2H 2 SO 4 → CO 2 + 2SO 2 + H 2 O

Уравниваем число атомов водорода, поставив перед формулой воды коэффициент 2, и убеждаемся, что число атомов кислорода в обеих частях уравнения одинаковое. Следовательно, уравнение ОВР

C + 2H 2 SO 4 = CO 2 + 2SO 2 + 2H 2 O

Возникает вопрос: в какую часть схемы ОВР следует поставить найденные дополнительные множители - в левую или правую?

Для простых реакций это не имеет значения. Однако следует иметь в виду: если определены дополнительные множители по левой части уравнения, то и коэффициенты проставляются перед формулами веществ в левой части; если же расчеты проводились для правой части, то коэффициенты ставятся в правой части уравнения. Например:

По числу атомов Al в левой части:

По числу атомов Al в правой части:

В общем случае, если в реакции участвуют вещества молекулярного строения (O 2 , Cl 2 , Br 2 , I 2 , N 2), то при подборе коэффициентов исходят именно из числа атомов в молекуле:

Если в реакции с участием HNO 3 образуется N 2 O, то схему электронного баланса для азота также лучше записывать исходя из двух атомов азота .

В некоторых окислительно-восстановительных реакциях одно из веществ может выполнять функцию как окислителя (восстановителя), так и солеобразователя (т.е. участвовать в образовании соли).

Такие реакции характерны, в частности, для взаимодействия металлов с кислотами-окислителями (HNO 3 , H 2 SO 4 (конц)), а также солей-окислителей (KMnO 4 , K 2 Cr 2 O 7 , KClO 3 , Ca(OCl) 2) с соляной кислотой (за счет анионов Cl − соляная кислота обладает восстановительными свойствами) и другими кислотами, анион которых - восстановитель.

Составим уравнение реакции меди с разбавленной азотной кислотой:

Видим, что часть молекул азотной кислоты расходуется на окисление меди, восстанавливаясь при этом до оксида азота(II), а часть идет на связывание образовавшихся ионов Cu 2+ в соль Cu(NO 3) 2 (в составе соли степень окисления атома азота такая же, как в кислоте, т.е. не изменяется). В таких реакциях дополнительный множитель для элемента-окислителя всегда ставится в правой части перед формулой продукта восстановления, в данном случае - перед формулой NO, а не HNO 3 или Cu(NO 3) 2 .

Перед формулой HNO 3 ставим коэффициент 8 (две молекулы HNO 3 расходуются на окисление меди и шесть - на связывание в соль трех ионов Cu 2+), уравниваем числа атомов Н и О и получаем

3Cu + 8HNO 3 = 3Cu(NO 3) 2 + 2NO + 4H 2 O.

В других случаях кислота, например соляная, может одновременно быть как восстановителем, так и участвовать в образовании соли:

Пример 8.5. Рассчитайте, какая масса HNO 3 расходуется на солеобразование, когда в реакцию, уравнение которой

вступает цинк массой 1,4 г.

Решение. Из уравнения реакции видим, что из 8 моль азотной кислоты только 2 моль пошло на окисление 3 моль цинка (перед формулой продукта восстановления кислоты, NO, стоит коэффициент 2). На солеобразование израсходовалось 6 моль кислоты, что легко определить, умножив коэффициент 3 перед формулой соли Zn(HNO 3) 2 на число кислотных остатков в составе одной формульной единицы соли, т.е. на 2.

n (Zn) = 1,4/65 = 0,0215 (моль).

x = 0,043 моль;

m (HNO 3) = n (HNO 3) · M (HNO 3) = 0,043 ⋅ 63 = 2,71 (г)

Ответ : 2,71 г.

В некоторых ОВР степень окисления изменяют атомы не двух, а трех элементов.

Пример 8.6. Расставьте коэффициенты в ОВР, протекающей по схеме FeS + O 2 → Fe 2 O 3 + SO 2 , используя метод электронного баланса.

Решение. Видим, что степень окисления изменяют атомы трех элементов: Fe, S и O. В таких случаях числа электронов, отданных атомами разных элементов, суммируются:

Расставив стехиометрические коэффициенты, получаем:

4FeS + 7O 2 = 2Fe 2 O 3 + 4SO 2 .

Рассмотрим примеры решения других типов экзаменационных заданий на эту тему.

Пример 8.7. Укажите число электронов, переходящих от восстановителя к окислителю при полном разложении нитрата меди(II), массой 28,2 г.

Решение. Записываем уравнение реакции разложения соли и схему электронного баланса ОВР; M = 188 г/моль.

Видим, что 2 моль O 2 образуется при разложении 4 моль соли. При этом от атомов восстановителя (в данном случае это ионы ) к окислителю (т.е. к ионам ) переходит 4 моль электронов: . Поскольку химическое количество соли n = 28,2/188 = = 0,15 (моль), имеем:

2 моль соли - 4 моль электронов

0,15 моль - x

n (e ) = x = 4 ⋅ 0,15/2 = 0,3 (моль),

N (e ) = N A n (e ) = 6,02 ⋅ 10 23 ⋅ 0,3 = 1,806 ⋅ 10 23 (электронов).

Ответ : 1,806 ⋅ 10 23 .

Пример 8.8. При взаимодействии серной кислоты химическим количеством 0,02 моль с магнием атомы серы присоединили 7,224 ⋅ 10 22 электронов. Найдите формулу продукта восстановления кислоты.

Решение. В общем случае схемы процессов восстановления атомов серы в составе серной кислоты могут быть такими:

т.е. 1 моль атомов серы может принять 2, 6 или 8 моль электронов. Учитывая, что в состав 1 моль кислоты входит 1 моль атомов серы, т.е. n (H 2 SO 4) = n (S), имеем:

n (e ) = N (e )/N A = (7,224 ⋅ 10 22)/(6,02 ⋅ 10 23) = 0,12 (моль).

Рассчитываем количество электронов, принятых 1 моль кислоты:

0,02 моль кислоты принимают 0,12 моль электронов

1 моль - х

n (e ) = x = 0,12/0,02 = 6 (моль).

Этот результат соответствует процессу восстановления серной кислоты до серы:

Ответ : сера.

Пример 8.9. В реакции углерода с азотной концентрированной кислотой образуются вода и два солеобразующих оксида. Найдите массу вступившего в реакцию углерода, если атомы окислителя в этом процессе приняли 0,2 моль электронов.

Решение. Взаимодействие веществ протекает согласно схеме реакции

Составляем уравнения полуреакций окисления и восстановления:

Из схем электронного баланса видим, что если атомы окислителя () принимают 4 моль электронов, то в реакцию вступает 1 моль (12 г) углерода. Составляем и решаем пропорцию:

4 моль электронов - 12 г углерода

0,2 - x

x = 0,2 ⋅ 12 4 = 0,6 (г).

Ответ : 0,6 г.

Классификация окислительно-восстановительных реакций

Различают межмолекулярные и внутримолекулярные окислительно-восстановительные реакции.

В случае межмолекулярных ОВР атомы окислителя и восстановителя входят в состав разных веществ и являются атомами разных химических элементов.

В случае внутримолекулярных ОВР атомы окислителя и восстановителя входят в состав одного и того же вещества. К внутримолекулярным относятся реакции диспропорционирования , в которых окислитель и восстановитель - это атомы одного и того же химического элемента в составе одного и того же вещества. Такие реакции возможны для веществ, содержащих атомы с промежуточной степенью окисления.

Пример 8.10. Укажите схему ОВР диспропорционирования:

1) MnO 2 + HCl → MnCl 2 + Cl 2 + H 2 O

2) Zn + H 2 SO 4 → ZnSO 4 + H 2

3) KI + Cl 2 → KCl + I 2

4) Cl 2 + KOH → KCl + KClO + H 2 O

Решение . Реакции 1)–3) являются межмолекулярными ОВР:

Реакцией диспропорционирования является реакция 4), так как в ней атом хлора и окислитель, и восстановитель:

Ответ : 4).

Качественно оценить окислительно-восстановительные свойства веществ можно на основании анализа степеней окисления атомов в составе вещества:

1) если атом, отвечающий за окислительно-восстановительные свойства, находится в высшей степени окисления, то этот атом уже не может отдавать электроны, а может их только принимать. Поэтому в ОВР данное вещество будет проявлять только окислительные свойства . Примеры таких веществ (в формулах указана степень окисления атома, отвечающего за окислительно-восстановительные свойства):

2) если атом, отвечающий за окислительно-восстановительные свойства, находится в низшей степени окисления, то данное вещество в ОВР будет проявлять только восстановительные свойства (принимать электроны данный атом уже не может, он может только их отдавать). Примеры таких веществ: , . Поэтому только восстановительные свойства в ОВР проявляют все анионы галогенов (исключение F − , для окисления которого используют электрический ток на аноде), сульфид-ион S 2− , атом азота в молекуле аммиака , гидрид-ион H − . Только восстановительными свойствами обладают металлы (Na, K, Fe);

3) если атом элемента находится в промежуточной степени окисления (степень окисления больше минимальной, но меньше максимальной), то соответствующее вещество (ион) будет в зависимости от условий проявлять двойственные окислительно -восстановительные свойства : более сильные окислители будут эти вещества (ионы) окислять, а более сильные восстановители - восстанавливать. Примеры таких веществ: сера , так как высшая степень окисления атома серы +6, а низшая −2, оксид серы(IV), оксид азота(III) (высшая степень окисления атома азота +5, а низшая −3), пероксид водорода (высшая степень окисления атома кислорода +2, а низшая −2). Двойственные окислительно-восстановительные свойства проявляют ионы металлов в промежуточной степени окисления: Fe 2+ , Mn +4 , Cr +3 и др.

Пример 8.11. Не может протекать окислительно-восстановительная реакция, схема которой:

1) Cl 2 + KOH → KCl + KClO 3 + H 2 O

2) S + NaOH → Na 2 S + Na 2 SO 3 + H 2 O

3) KClO → KClO 3 + KClO 4

4) KBr + Cl 2 → KCl + Br

Решение. Не может протекать реакция, схема которой указана под номером 3), так как в ней присутствует восстановитель , но нет окислителя:

Ответ : 3).

Для некоторых веществ окислительно-восстановительная двойственность обусловлена наличием в их составе различных атомов как в низшей, так и в высшей степени окисления; например, соляная кислота (HCl) за счет атома водорода (высшая степень окисления, равная +1) - окислитель, а за счет аниона Cl − - восстановитель (низшая степень окисления).

Невозможна ОВР между веществами, проявляющими только окислительные (HNO 3 и H 2 SO 4 , KMnO 4 и K 2 CrO 7) или только восстановительные свойства (HCl и HBr, HI и H 2 S)

ОВР чрезвычайно распространены в природе (обмен веществ в живых организмах, фотосинтез, дыхание, гниение, горение), широко используются человеком в различных целях (получение металлов из руд, кислот, щелочей, аммиака и галогенов, создание химических источников тока, получение тепла и энергии при горении различных веществ). Отметим, что ОВР часто и осложняют нашу жизнь (порча продуктов питания, плодов и овощей, коррозия металлов - все это связано с протеканием различных окислительно-восстановительных процессов).

К таковым относят реакции, в которых реагирующие вещества обмениваются электронами, изменяя при этом степени окисления атомов элементов, входящих в состав реагирующих веществ.


Например:


Zn + 2H + → Zn 2+ + H 2 ,


FeS 2 + 8HNO 3 (конц) = Fe(NO 3) 3 + 5NO + 2H 2 SO 4 + 2H 2 O,


Подавляющее большинство химических реакций относятся к окислительно-восстановительным, они играют исключительно важную роль.


Окисление - это процесс отдачи электронов атомом, молекулой или ионом.


Если атом отдает свои электроны, то он приобретает положительный заряд:


Например:


Al - 3e - = Al 3+


H 2 - 2e - = 2H +


При окислении степень окисления повышается.


Если отрицательно заряженный ион (заряд -1), например Cl - , отдает 1 электрон, то он становится нейтральным атомом:


2Cl - - 2e - = Cl 2


Если положительно заряженный ион или атом отдает электроны, то величина его положительного заряда увеличивается соответственно числу отданных электронов:


Fe 2+ - e - = Fe 3+


Восстановление - это процесс присоединения электронов атомом, молекулой или ионом.


Если атом присоединяет электроны, то он превращается в отрицательно заряженный ион:


Например:


Сl 2 + 2е- = 2Сl -


S + 2е - = S 2-


Если положительно заряженный ион принимает электроны, то величина его заряда уменьшается:


Fe 3+ + e- = Fe 2+


или он может перейти в нейтральный атом:


Fe 2+ + 2e- = Fe 0


Окислителем является атом, молекула или ион, принимающий электроны. Восстановителем является атом, молекула или ион, отдающий электроны.


Окислитель в процессе реакции восстанавливается, восстановитель - окисляется.


Окисление всегда сопровождается восстановлением, и наоборот, восстановление всегда связано с окислением, что можно выразить уравнениями:


Восстановитель - е - ↔ Окислитель


Окислитель + е - ↔ Восстановитель


Поэтому окислительно-восстановительные реакции представляют собой единство двух противоположных процессов - окисления и восстановления

Важнейшие восстановители и окислители

Восстановители


Окислители


Металлы, водород, уголь


Оксид углерода(II) CO


Сероводород H 2 S, оксид серы(IV) SO 2 , сернистая кислота H 2 SO 3 и ее соли


Иодоводородная кислота HI, бромоводородная кислота HBr, соляная кислота HCl


Хлорид олова(II) SnCl 2 , сульфат железа(II) FeSO 4 , сульфат марганца(II) MnSO 4 , сульфат хрома(III) Cr 2 (SO 4) 3


Азотистая кислота HNO 2 , аммиак NH 3 , гидразин N 2 H 4 , оксид азота(II) NO


Фосфористая кислота H 3 PO 3


Альдегиды, спирты, муравьиная и щавелевая кислоты, глюкоза


Катод при электролизе

Галогены


Перманганат калия KMnO 4 , манганат калия K 2 MnO 4 , оксид марганца(IV) MnO 2


Дихромат калия K 2 Cr 2 O 7 , хромат калия K 2 CrO 4


Азотная кислота HNO 3


Кислород O 2 , озон О 3 ,


пероксид водорода Н 2 О 2


Серная кислота H 2 SO 4 (конц.), селеновая кислота H 2 SeO 4


Оксид меди(II) CuO, оксид серебра(I) Ag 2 O, оксид свинца(IV) PbO 2


Ионы благородных металлов (Ag + , Au 3+ и др.)


Хлорид железа(III) FeCl 3


Гипохлориты, хлораты и перхлораты


Царская водка, смесь концентрированной азотной и плавиковой кислот


Анод при электролизе


Метод электронного баланса.

Для уравнивания ОВР используют несколько способов, из которых мы пока рассмотрим один - метод электронного баланса.


Напишем уравнение реакции между алюминием и кислородом:


Al + O 2 = Al 2 O 3


Пусть вас не вводит в заблуждение простота этого уравнения. Наша задача - разобраться в методе, который в будущем позволит вам уравнивать гораздо более сложные реакции.


Итак, в чем заключается метод электронного баланса? Баланс - это равенство. Поэтому следует сделать одинаковым количество электронов, которые отдает один элемент и принимает другой элемент в данной реакции. Первоначально это количество выглядит разным, что видно из разных степеней окисления алюминия и кислорода:


Al 0 + O 2 0 = Al 2 +3 O 3 -2


Алюминий отдает электроны (приобретает положительную степень окисления), а кислород - принимает электроны (приобретает отрицательную степень окисления). Чтобы получить степень окисления +3, атом алюминия должен отдать 3 электрона. Молекула кислорода, чтобы превратиться в кислородные атомы со степенью окисления -2, должна принять 4 электрона:


Al 0 - 3e- = Al +3


O 2 0 + 4e- = 2O -2


Чтобы количество отданных и принятых электронов выровнялось, первое уравнение надо умножить на 4, а второе - на 3. Для этого достаточно переместить числа отданных и принятых электронов против верхней и нижней строчки так, как показано на схеме вверху.


Если теперь в уравнении перед восстановителем (Al) мы поставим найденный нами коэффициент 4, а перед окислителем (O 2) - найденный нами коэффициент 3, то количество отданных и принятых электронов выравнивается и становится равным 12. Электронный баланс достигнут. Видно, что перед продуктом реакции Al 2 O 3 необходим коэффициент 2. Теперь уравнение окислительно-восстановительной реакции уравнено:


4Al + 3O 2 = 2Al 2 O 3


Все преимущества метода электронного баланса проявляются в более сложных случаях, чем окисление алюминия кислородом.


Например, известная всем "марганцовка" – марганцевокислый калий KMnO 4 - является сильным окислителем за счет атома Mn в степени окисления +7. Даже анион хлора Cl – отдает ему электрон, превращаясь в атом хлора. Это иногда используют для получения газообразного хлора в лаборатории:


K + Mn +7 O 4 -2 + K + Cl - + H 2 SO 4 = Cl 2 0 + Mn +2 SO 4 + K 2 SO 4 + H 2 O


Составим схему электронного баланса:


Mn +7 + 5e- = Mn +2


2Cl - - 2e- = Cl 2 0


Двойка и пятерка - главные коэффициенты уравнения, благодаря которым удается легко подобрать все другие коэффициенты. Перед Cl 2 следует поставить коэффициент 5 (или 2 × 5 = 10 перед KСl), а перед KMnO 4 - коэффициент 2. Все остальные коэффициенты привязывают к этим двум коэффициентам. Это гораздо легче, чем действовать простым перебором чисел.


2 KMnO 4 + 10KCl + 8H 2 SO 4 = 5 Cl 2 + 2MnSO 4 + 6K 2 SO 4 + 8H 2 O


Чтобы уравнять количество атомов К (12 атомов слева), надо перед K 2 SO 4 в правой части уравнения поставить коэффициент 6. Наконец, чтобы уравнять кислород и водород, достаточно перед H 2 SO 4 и H 2 O поставить коэффициент 8. Мы получили уравнение в окончательном виде.


Метод электронного баланса, как мы видим, не исключает и обыкновенного подбора коэффициентов в уравнениях окислительно-восстановительных реакций, но может заметно облегчить такой подбор.


Составление уравнения реакции меди с раствором нитрата палладия (II) . Запишем формулы исходных и конечных веществ реакции и покажем изменения степеней окисления:

из которых следует, что при восстановителе и окислителе коэффициенты равны 1. Окончательное уравнение реакции:


Cu + Pd(NO 3) 2 = Cu(NO 3) 2 + Pd


Как видно, в суммарном уравнении реакции электроны не фигурируют.


Чтобы проверить правильность составленного уравнения, подсчитываем число атомов каждого элемента в его правой и левой частях. Например, в правой части 6 атомов кислорода, в левой также 6 атомов; палладия 1 и 1; меди тоже 1 и 1. Значит, уравнение составлено правильно.


Переписываем это уравнение в ионной форме:


Cu + Pd 2+ + 2NO 3 - = Cu 2+ + 2NO 3 - + Рd


И после сокращения одинаковых ионов получим


Cu + Pd 2+ = Cu 2+ + Рd

Составление уравнения реакции взаимодействия оксида марганца (IV) с концентрированной соляной кислотой

(с помощью этой реакции в лабораторных условиях получают хлор).


Запишем формулы исходных и конечных веществ реакции:


НCl + МnО 2 → Сl 2 + MnСl 2 + Н 2 О


Покажем изменение степеней окисления атомов до и после реакции:



Эта реакция окислительно-восстановительная, так как изменяются степени окисления атомов хлора и марганца. НCl - восстановитель, MnО 2 - окислитель. Составляем электронные уравнения:



и находим коэффициенты при восстановителе и окислителе. Они соответствен­но равны 2 и 1. Коэффициент 2 (а не 1) ставится потому, что 2 атома хлора со степенью окисления -1 отдают 2 электрона. Этот коэффициент уже стоит в электронном уравнении:


2НСl + MnO 2 → Сl 2 + MnСl 2 + Н 2 О


Находим коэффициенты для других реагирующих веществ. Из электронных уравнений видно, что на 2 моль HCl приходится 1 моль MnО 2 . Однако, учитывая, что для связывания образующегося двухзарядного иона марганца нужно еще 2 моль кислоты, перед восстановителем следует поставить коэффициент 4. Тогда воды получится 2 моль. Окончательное уравнение имеет вид


4НCl + МnО 2 = Сl 2 + MnСl 2 + 2Н 2 О


Проверку правильности написания уравнения можно ограничить подсчетом числа атомов одного какого-либо элемента, например хлора: в левой части 4 и в правой 2 + 2 = 4.


Поскольку в методе электронного баланса изображаются уравнения реакций в молекулярной форме, то после составления и проверки их следует написать в ионной форме.


Перепишем составленное уравнение в ионной форме:


4Н + + 4Сl - + МnО 2 = Сl 2 + Мn 2 + + 2Сl - + 2Н 2 О


и после сокращения одинаковых ионов в обеих частях уравнения получим


4Н + + 2Сl - + МnО 2 = Сl 2 + Мn 2 + + 2Н 2 О

Составление уравнения реакции взаимодействия сероводорода с подкисленным раствором перманганата калия.

Напишем схему реакции - формулы исходных и полученных веществ:


Н 2 S + КМnO 4 + Н 2 SО 4 → S + МnSО 4 + К 2 SO 4 + Н 2 О


Затем покажем изменение степеней окисления атомов до и после реакции:



Изменяются степени окисления у атомов серы и марганца (Н 2 S - восстановитель, КМnО 4 - окислитель). Составляем электронные уравнения, т.е. изображаем процессы отдачи и присоединения электронов:



И наконец, находим коэффициенты при окислителе и восстановителе, а затем при других реагирующих веществах. Из электронных уравнений видно, что надо взять 5 моль Н 2 S и 2 моль КМnО 4 , тогда получим 5 моль атомов S и 2 моль МnSО 4 . Кроме того, из сопоставления атомов в левой и правой частях уравнения, найдем, что образуется также 1 моль К 2 SО 4 и 8 моль воды. Окончательное уравнение реакции будет иметь вид


5Н 2 S + 2КМnО 4 + ЗН 2 SО 4 = 5S + 2МnSО 4 + К 2 SО 4 + 8Н 2 О


Правильность написания уравнения подтверждается подсчетом атомов одного элемента, например кислорода; в левой части их 2 4 + 3 4 = 20 и в правой части 2 4 + 4 + 8 = 20.


Переписываем уравнение в ионной форме:


5Н 2 S + 2MnO 4 - + 6H + = 5S + 2Мn 2+ + 8Н 2 О


Известно, что правильно написанное уравнение реакции является выражением закона сохранения массы веществ. Поэтому число одних и тех же атомов в исходных веществах и продуктах реакции должно быть одинаковым. Должны сохраняться и заряды. Сумма зарядов исходных веществ всегда должна быть равна сумме зарядов продуктов реакции.


Метод электронно-ионного баланса более универсален по сравнению с методом электронного баланса и имеет неоспоримое преимущество при подборе коэффициентов во многих окислительно-восстановительных реакциях, в частности, с участием органических соединений, в которых даже процедура определения степеней окисления является очень сложной.

Классификация ОВР

Различают три основных типа окислительно-восстановительных реакций:


1) Реакции межмолекулярного окисления-восстановления
(когда окислитель и восстановитель - разные вещества);


2) Реакции диспропорционирования
(когда окислителем и восстановителем может служить одно и то же вещество);


3) Реакции внутримолекулярного окисления-восстановления
(когда одна часть молекулы выступает в роли окислителя, а другая - в роли восстановителя).>


Рассмотрим примеры реакций трех типов.


1. Реакциями межмолекулярного окисления-восстановления являются все уже рассмотренные нами в этом параграфе реакции.
Рассмотрим несколько более сложный случай, когда не весь окислитель может быть израсходован в реакции, поскольку часть его участвует в обычной - не окислительно-восстановительной реакции обмена:


Cu 0 + H + N +5 O 3 -2 = Cu +2 (N +5 O 3 -2) 2 + N +2 O -2 + H 2 O


Часть частиц NO 3 - участвует в реакции в качестве окислителя, давая оксид азота NO, а часть ионов NO 3 - в неизменном виде переходит в соединение меди Cu(NO 3) 2 . Составим электронный баланс:


Cu 0 - 2e- = Cu +2


N +5 + 3e- = N +2


Поставим найденный для меди коэффициент 3 перед Cu и Cu(NO 3) 2 . А вот коэффициент 2 следует поставить только перед NO, потому что весь имеющийся в нем азот участвовал в окислительно-восстановительной реакции. Было бы ошибкой поставить коэффициент 2 перед HNO 3 , потому что это вещество включает в себя и те атомы азота, которые не участвуют в окислении-восстановлении и входят в состав продукта Cu(NO 3) 2 (частицы NO 3 - здесь иногда называют "ионом-наблюдателем").


Остальные коэффициенты подбираются без труда по уже найденным:


3 Cu + 8HNO 3 = 3 Cu(NO 3) 2 + 2 NO + 4H 2 O


2. Реакции диспропорционирования происходят тогда, когда молекулы одного и того же вещества способны окислять и восстанавливать друг друга. Это становится возможным, если вещество содержит в своем составе атомы какого-либо элемента в промежуточной степени окисления.


Следовательно, степень окисления способна как понижаться, так и повышаться. Например:


HN +3 O 2 = HN +5 O 3 + N +2 O + H 2 O


Эту реакцию можно представить как реакцию между HNO 2 и HNO 2 как окислителем и восстановителем и применить метод электронного баланса:


HN +3 O 2 + HN +3 O 2 = HN +5 O3 + N +2 O + H 2 O


N +3 - 2e- = N +5


N +3 + e- = N +2


Получаем уравнение:


2HNO 2 + 1HNO 2 = 1 HNO 3 + 2 NO + H 2 O


Или, складывая вместе моли HNO 2:


3HNO 2 = HNO 3 + 2NO + H 2 O


Реакции внутримолекулярного окисления-восстановления происходят тогда, когда в молекуле соседствуют атомы-окислители и атомы-восстановители. Рассмотрим разложение бертолетовой соли KClO 3 при нагревании:


KCl +5 O 3 -2 = KCl - + O 2 0


Это уравнение также подчиняется требованию электронного баланса:


Cl +5 + 6e- = Cl -


2O -2 - 2e- = O 2 0


Здесь возникает сложность - какой из двух найденных коэффициентов поставить перед KClO 3 - ведь эта молекула содержит и окислитель и восстановитель?


В таких случаях найденные коэффициенты ставятся перед продуктами:


KClO 3 = 2KCl + 3O 2


Теперь ясно, что перед KClO 3 надо поставить коэффициент 2.


2KClO 3 = 2KCl + 3O 2


Внутримолекулярная реакция разложения бертолетовой соли при нагревании используется при получении кислорода в лаборатории.

Метод полуреакций



Как показывает само название, этот метод основан на составлении ионных уравнений для процесса окисления и процесса восстановления с последующим суммированием их в общее уравнение.
В качестве примера составим уравнение той же реакции, которую использовали при объяснении метода электронного баланса.
При пропускании сероводорода Н 2 S через подкисленный раствор перманганата калия КМnО 4 малиновая окраска исчезает и раствор мутнеет.
Опыт показывает, что помутнение раствора происходит в результате образования элементной серы, т.е. протекания процесса:


Н 2 S → S + 2H +


Эта схема уравнена по числу атомов. Для уравнивания по числу зарядов надо от левой части схемы отнять два электрона, после чего можно стрелку заменить на знак равенства:


Н 2 S - 2е - = S + 2H +


Это первая полуреакция - процесс окисления восстановителя Н 2 S.


Обесцвечивание раствора связано с переходом иона MnO 4 - (он имеет малиновую окраску) в ион Mn 2+ (практически бесцветный и лишь при большой концентрации имеет слабо-розовую окраску), что можно выразить схемой


MnO 4 - → Mn 2+


В кислом растворе кислород, входящий в состав ионов МnО 4 , вместе с ионами водорода в конечном итоге образует воду. Поэтому процесс перехода записываем так:


MnO 4 - + 8Н + → Мn 2+ + 4Н 2 О


Чтобы стрелку заменить на знак равенства, надо уравнять и заряды. Поскольку исходные вещества имеют семь положительных зарядов (7+), а конечные - два положительных (2+), то для выполнения условия сохранения зарядов надо к левой части схемы прибавить пять электронов:


MnO 4 - + 8Н + + 5e - = Mn 2+ + 4Н 2 О


Это вторая полуреакция - процесс восстановления окислителя, т.е. перманганат-иона


Для составления общего уравнения реакции надо уравнения полуреакций почленно сложить, предварительно уравняв числа отданных и полученных электронов. В этом случае по правилам нахождения наименьшего кратного определяют соответствующие множители, на которые умножаются уравнения полуреакций. Сокращенно запись проводится так:



И, сократив на 10Н + , окончательно получим


5Н 2 S + 2MnO 4 - + 6H + = 5S + 2Mn 2+ + 8Н 2 О


Проверяем правильность составленного в ионной форме уравнения: число атомов кислорода в левой части 8, в правой 8; число зарядов: в левой части (2-)+(6+) = 4+, в правой 2(2+) = 4+. Уравнение составлено правильно, так как атомы и заряды уравнены.


Методом полуреакций составляется уравнение реакции в ионной форме. Чтобы от него перейти к уравнению в молекулярной форме, поступаем так: в левой части ионного уравнения к каждому аниону подбираем соответствующий катион, а к каждому катиону - анион. Затем те же ионы в таком же числе записываем в правую часть уравнения, после чего ионы объединяем в молекулы:




Таким образом, составление уравнений окислительно-восстановительных реакций с помощью метода полуреакций приводит к тому результату, что и метод электронного баланса.


Сопоставим оба метода. Достоинство ыметода полуреакций по срав­нению с методом электронного баланса в том. что в нем применяются не гипотетические ионы, а реально существующие. В самом деле, в растворе нет ионов , а есть ионы .


При методе полуреакций не нужно знать степень окисления атомов.


Написание отдельных ионных уравнений полуреакций необходимо для понимания химических процессов в гальваническом элементе и при электролизе. При этом методе видна роль среды как активного участника всего процесса. Наконец, при использовании метода полуреакций не нужно знать все получающиеся вещества, они появляются в уравнении реакции при выводе его. Поэтому методу полуреакций следует отдать предпочтение и применять его при составлении уравнений всех окислительно-восстановительных реакций, протекающих в водных растворах.

Химические реакции, протекающие с изменением степени окисления элементов, входящих в состав реагирующих веществ, называются окислительно-восстановительными.

Окисление - это процесс отдачи электронов атомом, молекулой или ионом. Если атом отдает свои электроны, то он приобретает положительный заряд, например:

Если отрицательно заряженный ион (заряд -1), например , отдает 1 электрон, то он становится нейтральным атомом:

Если положительно заряженный ион или атом отдает электроны, то величина его положительного заряда увеличивается соответственно числу отданных электронов:

Восстановление - это процесс присоединения электронов атомом, молекулой или ионом.

Если атом присоединяет электроны, то он превращается в отрицательно заряженный ион:

Если положительно заряженный ион принимает электроны, то величина его заряда уменьшается, например:

или он может перейти в нейтральный атом:

Окислителем является атом, молекула или ион, принимающий электроны. Восстановителем является атом, молекула или ион, отдающий электроны.

Окислитель в процессе реакции восстанавливается, а восстановитель - окисляется.

Следует помнить, что рассмотрение окисления (восстановления) как процесса отдачи (и принятия) электронов атомами или ионами не всегда отражает истинное положение, так как во многих случаях происходит не полный перенос электронов, а только смещение электронного облака от одного атома к другому.

Однако для составления уравнений окислительно-восстановительных реакций не имеет существенного значения, какая связь при этом образуется - ионная или ковалентная. Поэтому для простоты будем говорить о присоединении или отдаче электронов независимо от типа связи.

Составление уравнений окислительно-восстановительных реакций и подбор коэффициентов. При составлении уравнения окислительно-восстановительной реакции необходимо определить восстановитель, окислитель и число отдаваемых и принимаемых электронов.

Как правило, коэффициенты подбирают, используя либо метод электронного баланса, либо метод электронно-ионного баланса (иногда последний называют методом полуреакций).

В качестве примера составления уравнений окислительно-восстановительных реакций рассмотрим процесс окисления пирита концентрированной азотной кислотой:

Прежде всего, определим продукты реакции. является сильным окислителем, поэтому сера будет окисляться до максимальной степени окисления а железо - до , при этом может восстанавливаться до или . Мы выберем .

Где будет находиться (в левой или правой части), мы пока не знаем.

1. Применим сначала метод электронно-ионного баланса. В этом методе рассматривают переход электронов от одних атомов или ионов к другим с учетом характера среды (кислая, щелочная или нейтральная), в которой протекает реакция. - При составлении уравнений процессов окисления и восстановления для уравнивания числа атомов водорода и кислорода вводят (в зависимости от среды) или молекулы воды и ионы водорода (если среда кислая), или молекулы воды и гидроксид-ионы (если среда щелочная). Соответственно и в получаемых продуктах в правой части электронно-ионного уравнения будут находиться ионы водорода и молекулы воды (кислая среда) или гидроксид-ионы и молекулы воды (щелочная среда).

Таким образом, при написании электронно-ионных уравнений нужно исходить из состава ионов, действительно имеющихся в растворе. Кроме того, как и при составлении сокращенных ионных уравнений, вещества малодиссоциирующие, плохо растворимые или выделяющиеся в виде газа следует писать в молекулярной форме.

Рассмотрим для нашего случая полуреакцию окисления.

Молекула превращается в ион полностью диссоциирует на ионы, гидролизом пренебрегаем) и два иона (диссоциация ):

Для того чтобы уравнять кислород, в левую часть добавим 8 молекул а в правую - 16 ионов (среда кислая!):

Заряд левой части равен 0, заряд правой поэтому должен отдать 15 электронов:

Рассмотрим теперь полуреакцию восстановления нитрат-иона:

Необходимо отнять у атома О. Для этого к левой части добавим 4 иона (кислая среда), а к правой - 2 молекулы

Для уравнивания заряда к левой части (заряд ) добавим 3 электрона:

Окончательно имеем:

Сократив обе части на получим сокращенное ионное уравнение окислительно-восстановительной реакции:

Добавив в обе части уравнения соответствующее количество ионов находим молекулярное уравнение реакции:

Обратите внимание, что для определения количества отданных и принятых электронов нам ни разу не пришлось определять степень окисления элементов. Кроме того, мы учли влияние среды и автоматически определили, что находится в правой части уравнения. Несомненно то, что этот метод гораздо больше соответствует химическому смыслу, чем стандартный метод электронного баланса, хотя последний несколько проще для понимания.

2. Уравняем данную реакцию методом электронного баланса. Процесс восстановления описывается просто:

Сложнее составить схему окисления, поскольку окисляются сразу 2 элемента - Fe и S. Можно приписать железу степень окисления сере и учесть, что на 1 атом Fe приходится два атома S:

Можно, однако, обойтись без определения степеней окисления и записать схему, напоминающую схему (7.1):

Правая часть имеет заряд +15, левая - 0, поэтому должен отдать 15 электронов. Записываем общий баланс:

5 молекул идут на окисление , и еще 3 молекулы необходимы для образования

Чтобы уравнять водород и кислород, добавляем в правую часть 2 молекулы :

Метод электронно-ионного баланса более универсален по сравнению с методом электронного баланса и имеет неоспоримое преимущество при подборе коэффициентов во многих окислительно-восстановительных реакциях, в частности, с участием органических соединений, в которых даже процедура определения степеней окисления является очень сложной.

Рассмотрим, например, процесс окисления этилена, происходящий при пропускании его через водный раствор перманганата калия. В результате этилен окисляется до этиленгликоля , а перманганат восстанавливается до оксида марганца (IV), кроме того, как будет очевидно из итогового уравнения баланса, справа образуется также гидроксид калия:

После проведения необходимых сокращений подобных членов, записываем уравнение в окончательном молекулярном виде

Количественная характеристика окислительно-восстановительных реакций. Ряд стандартных электродных потенциалов. Возможность протекания любой окислительно-восстановительной реакции в реальных условиях обусловлена рядом причин: температурой, природой окислителя и восстановителя, кислотностью среды, концентрацией веществ, участвующих в реакции, и т.д.

Учесть все эти факторы бывает трудно, но, помня о том, что любая окислительно-восстановительная реакция протекает с переносом электронов от восстановителя к окислителю, можно установить критерий возможности протекания такой реакции.

Количественной характеристикой окислительно-восста-новительных процессов являются нормальные окислительно-восстановительные потенциалы окислителей и восстановителей (или стандартные потенциалы электродов).

Чтобы понять физико-химический смысл таких потенциалов, необходимо проанализировать так называемые электрохимические процессы.

Химические процессы, сопровождающиеся возникновением электрического тока или вызываемые им, называются электрохимическими.

Чтобы понять природу электрохимических процессов, обратимся к рассмотрению нескольких достаточно простых ситуаций. Представим себе металлическую пластинку, погруженную в воду. Под действием полярных молекул воды ионы металла отрываются от поверхности пластинки и гидратированными переходят в жидкую фазу. Последняя при этом заряжается положительно, а на металлической пластинке появляется избыток электронов. Чем дальше протекает процесс, тем больше становится заряд как пластинки, так и жидкой фазы.

Благодаря электростатическому притяжению катионов раствора и избыточных электронов металла на границе раздела фаз возникает так называемый двойной электрический слой, который тормозит дальнейший переход ионов металла в жидкую фазу. Наконец наступает момент, когда между раствором и металлической пластинкой устанавливается равновесие, которое можно выразить уравнением:

или с учетом гидратации ионов в растворе:

Состояние этого равновесия зависит от природы металла, концентрации его ионов в растворе, от температуры и давления.

При погружении металла не в воду, а в раствор соли этого металла равновесие в соответствии с принципом Ле Шателье смещается влево и тем больше, чем выше концентрация ионов металла в растворе. Активные металлы, ионы которых обладают хорошей способностью переходить в раствор, будут в этом случае заряжаться отрицательно, хотя в меньшей степени, чем в чистой воде.

Равновесие (7.2) можно сместить вправо, если тем или иным способом удалять электроны из металла. Это приведет к растворению металлической пластинки. Наоборот, если к металлической пластинке подводить электроны извне, то на ней будет происходить осаждение ионов из раствора.

Как уже отмечалось, при погружении металла в раствор на границе раздела фаз образуется двойной электрический слой. Разность потенциалов, возникающую между металлом и окружающей его жидкой фазой, называют электродным потенциалом. Этот потенциал является характеристикой.окислительно-восстановительной способности металла в виде твердой фазы.

Заметим, что у изолированного металлического атома (состояние одноатомного пара, возникающее при высоких температурах и высоких степенях разрежения) окислительно-восстановительные свойства характеризуются другой величиной, называемой ионизационным потенциалом. Ионизационный потенциал - это энергия, необходимая для отрыва электрона от изолированного атома.

Абсолютное значение электродного потенциала нельзя измерить непосредственно. Вместе с тем, не представляет труда измерение разности электродных потенциалов, которая возникает в системе, состоящей из двух пар металл-раствор. Такие пары называют полу элементами. Условились определять электродные потенциалы металлов по отношению к так называемому стандартному водородному электроду, потенциал которого произвольно принят за ноль. Стандартный водородный электрод состоит из специально приготовленной платиновой пластинки, погруженной в раствор кислоты с концентрацией ионов водорода и омываемой струей газообразного во дорода под давлением Па, при температуре

Возникновение потенциала на стандартном водородном электроде можио представить себе следующим образом. Газообразный водород, адсорбируясь платиной, переходит в атомарное состояние:

Между атомарным водородом, образующимся на поверхности пластины, ионами водорода в растворе и платиной (электроны!) реализуется состояние динамического равновесия:

Суммарный процесс выражается уравнением:

Платина не принимает участия в окислительно-восстановительном процессе, а является лишь носителем атомарного водорода.

Если пластинку металла, погруженную в раствор его соли с концентрацией ионов металла, равной 1 моль/л, соединить со стандартным водородным электродом, то получится гальванический элемент. Электродвижущая сила этого элемента (ЭДС), измеренная при и характеризует стандартный электродный потенциал металла, обозначаемый обычно как .

В таблице 7.1 представлены значения стандартных электродных потенциалов некоторых металлов. Стандартные потенциалы электродов, выступающих как восстановители по отношению к водороду, имеют знак «-», а знаком «+» отмечены стандартные потенциалы электродов, являющихся окислителями.

Металлы, расположенные в порядке возрастания их стандартных электродных потенциалов, образуют так называемый электрохимический ряд напряжений металлов:

Ряд напряжений характеризует химические свойства металлов:

1. Чем более отрицателен электродный потенциал металла, тем больше его восстановительная способность.

2. Каждый металл способен вытеснять (восстанавливать) из растворов солей те металлы, которые стоят в электрохимическом ряду напряжений металлов после него.

3. Все металлы, имеющие отрицательный стандартный электродный потенциал, т.е. находящиеся в электрохимическом ряду напряжений металлов левее водорода, способны вытеснять его из растворов кислот.

Необходимо отметить, что представленный ряд характеризует поведение металлов и их солей только в водных растворах и при комнатной температуре. Кроме того, нужно иметь в виду, что указанные в таблице стандартные электродные потенциалы учитывают особенности взаимодействия того или иного иона с молекулами растворителя. Это может нарушать некоторые ожидаемые закономерности в расположении металлов в электрохимическом ряду напряжений металлов. Например, электрохимический ряд напряжений металлов начинается литием, тогда как более активные в химическом отношении рубидий и калий находятся правее лития. Это связано с исключительно высокой энергией процесса гидратации ионов лития по сравнению с ионами других щелочных металлов.

Одновременно в таблице 7.1 приведены стандартные окислительно-восстановительные потенциалы которые измерены для неметаллических систем типа (7.3), находящихся в равновесном состоянии по отношению к нормальному водородному электроду.

В таблице приведены полуреакции восстановления следующего общего вида:

Как и в случае определения значения металлов, значения неметаллов измеряются при температуре 25 °С и при концентрации всех атомных и молекулярных частиц, участвующих в равновесии, равной 1 моль/л.

Таблица 7.1. Стандартные окислительно-восстановительные потенциалы при 25 °С (298 К)

(см. скан)

Алгебраическое значение стандартного окислительно-восстановительного потенциала характеризует окислительную активность соответствующей окисленной формы. Поэтому сопоставление значений стандартных окислительно-восстановительных потенциалов позволяет ответить на вопрос: протекает ли та или иная окислительно-восстановительная реакция?

Так, все полуреакции окисления галогенид-ионов до свободных галогенов

могут быть реализованы в стандартных условиях при использовании в качестве окислителя оксида свинца (IV) или перманганата калия . При использовании дихромата калия удается осуществить только реакции (7.5) и (7.6). Наконец, использование в качестве окислителя азотной кислоты позволяет осуществить только полуреакцию с участием иодид-ионов (7.6).

Таким образом, количественным критерием оценки возможности протекания той или иной окислительновосстановительной реакции является положительное значение разности стандартных окислительно-восстановительных потенциалов полуреакций окисления и восстановления.

Описание

В процессе окислительно-восстановительной реакции восстановитель отдаёт электроны, то есть окисляется ; окислитель присоединяет электроны, то есть восстанавливается . Причём любая окислительно-восстановительная реакция представляет собой единство двух противоположных превращений - окисления и восстановления, происходящих одновременно и без отрыва одного от другого.

Окисление

Окисление - процесс отдачи электронов, с увеличением степени окисления.

При окисле́нии вещества в результате отдачи электронов увеличивается его степень окисления. Атомы окисляемого вещества называются донорами электронов, а атомыокислителя - акцепторами электронов.

В некоторых случаях при окислении молекула исходного вещества может стать нестабильной и распасться на более стабильные и более мелкие составные части (см. Свободные радикалы). При этом некоторые из атомов получившихся молекул имеют более высокую степень окисления, чем те же атомы в исходной молекуле.

Окислитель, принимая электроны, приобретает восстановительные свойства, превращаясь в сопряжённый восстановитель:

окислитель + e − ↔ сопряжённый восстановитель .

Восстановление

При восстановлении атомы или ионы присоединяют электроны. При этом происходит понижение степени окисления элемента. Примеры: восстановление оксидов металлов до свободных металлов при помощи водорода, углерода, других веществ; восстановление органических кислот в альдегиды и спирты; гидрогенизация жиров и др.

Восстановитель, отдавая электроны, приобретает окислительные свойства, превращаясь в сопряжённый окислитель:

восстановитель - e − ↔ сопряжённый окислитель .

Несвязанный, свободный электрон является сильнейшим восстановителем.

Окислительно-восстановительная пара

Окислитель и его восстановленная форма, либо восстановитель и его окисленная форма составляет сопряжённую окислительно-восстановительную пару , а их взаимопревращения являются окислительно-восстановительными полуреакциями.



В любой окислительно-восстановительной реакции принимают участие две сопряжённые окислительно-восстановительные пары, между которыми имеет место конкуренция за электроны, в результате чего протекают две полуреакции: одна связана с присоединением электронов, т.е. восстановлением, другая - с отдачей электронов, т.е. окислением.

Виды окислительно-восстановительных реакций

Межмолекулярные - реакции, в которых окисляющиеся и восстанавливающиеся атомы находятся в молекулах разных веществ, например:

Н 2 S + Cl 2 → S + 2HCl

Внутримолекулярные - реакции, в которых окисляющиеся и восстанавливающиеся атомы находятся в молекулах одного и того же вещества, например:

2H 2 O → 2H 2 + O 2

Диспропорционирование (самоокисление-самовосстановление) - реакции, в которых один и тот же элемент выступает и как окислитель, и как восстановитель, например:

Cl 2 + H 2 O → HClO + HCl

Репропорционирование (конпропорционирование) - реакции, в которых из двух различных степеней окисления одного и того же элемента получается одна степень окисления, например:

NH 4 NO 3 → N 2 O + 2H 2 O

Примеры

Окислительно-восстановительная реакция между водородом и фтором

Разделяется на две полуреакции:

1) Окисление:

2) Восстановление:

Окисление, восстановление

В окислительно-восстановительных реакциях электроны от одних атомов, молекул или ионов переходят к другим. Процесс отдачи электронов - окисление. При окислении степень окисления повышается:



Планирование беременности