Примеры фрактальных структур в природе. Понятия фрактал и фрактальная геометрия

Фрактал

Фракта́л (лат. fractus -дроблёный,сломанный,разбитый) - геометрическая фигура,обладающая свойством самоподобия, то есть составленная из нескольких частей, каждая из которых подобна всей фигуре целиком.В математике под фракталами понимают множества точек в евклидовом пространстве, имеющие дробную метрическую размерность (в смысле Минковского или Хаусдорфа), либо метрическую размерность, отличную от топологической. Фрактазм - самостоятельная точная наука изучения и составления фракталов.

Другими словами фракталы – геометрические объекты с дробной размерностью. К примеру, размерность линии – 1, площади – 2, объема – 3. У фрактала же значение размерности может быть между 1 и 2 или между 2 и 3. К примеру, фрактальная размерность скомканного бумажного шарика приблизительно равна 2,5. В математике существует специальная сложная формула для вычисления размерности фракталов. Разветвления трубочек трахей, листья на деревьях, вены в руке, река - это фракталы. Говоря простым языком, фрактал - это геометрическая фигура, определенная часть которой повторяется снова и снова, изменяясь в размерах - это и есть принцип самоподобия. Фракталы подобны самим себе, они похожи сами на себя на всех уровнях (т.е. в любом масштабе). Существует много различных типов фракталов. В принципе, можно утверждать, что всё, что существует в реальном мире, является фракталом, будь то облако или молекула кислорода.

Слово «хаос» наводит на мысли о чем-то непредсказуемом, но на самом деле хаос достаточно упорядочен и подчиняется определенным законам. Цель изучения хаоса и фракталов - предсказать закономерности, которые, на первый взгляд, могут казаться непредсказуемыми и абсолютно хаотическими.

Пионером в этой области познания был франко-американский математик, профессор Бенуа Б. Мандельброт. В середине 1960-х им разработана фрактальная геометрия, целью которой был анализ ломаных, морщинистых и нечетких форм. Множество Мандельброта (показано на рисунке) - первая ассоциация, возникающая у человека, когда он слышит слово «фрактал». К слову, Мандельброт определил, что фрактальная размерность береговой линии Англии составляет 1,25.

Фракталы находят всё большее применение в науке. Они описывают реальный мир даже лучше, чем традиционная физика или математика. Броуновское движение - это, например, случайное и хаотическое движение частичек пыли, взвешенных в воде. Этот тип движения, возможно, является аспектом фрактальной геометрии, имеющий наибольшее практическое использование. Случайное броуновское движение имеет частотную характеристику, которая может быть использована для предсказания явлений, включающих большие количества данных и статистики. К примеру, Мандельброт предсказал при помощи броуновского движения изменение цен на шерсть.

Слово «фрактал» может употребляться не только как математический термин. Фракталом в прессе и научно-популярной литературе могут называть фигуры, обладающие какими-либо из перечисленных ниже свойств:

    Обладает нетривиальной структурой на всех масштабах. В этом отличие от регулярных фигур (таких, как окружность, эллипс, график гладкой функции): если мы рассмотрим небольшой фрагмент регулярной фигуры в очень крупном масштабе, он будет похож на фрагмент прямой. Для фрактала увеличение масштаба не ведёт к упрощению структуры, на всех шкалах мы увидим одинаково сложную картину.

    Является самоподобной или приближённо самоподобной.

    Обладает дробной метрической размерностью или метрической размерностью, превосходящей топологическую.

Наиболее полезным использованием фракталов в компьютерной технике является фрактальное сжатие данных. При этом картинки сжимаются гораздо лучше, чем это делается обычными методами - до 600:1. Другое преимущество фрактального сжатия в том, что при увеличении не наблюдается эффекта пикселизации, резко ухудшающего картинку. Мало того, фрактально сжатая картинка после увеличения часто выглядит даже лучше, чем до него. Cпециалистам в области компьютерной техники известно также, что фракталы бесконечной сложности и красоты могут быть сгенерированы простыми формулами. Индустрия кино для создания реалистичных элементов ландшафта (облака, скалы и тени) широко использует технологию фрактальной графики.

Изучение турбулентности в потоках очень хорошо подстраивается под фракталы. Это позволяет лучше понять динамику сложных потоков. При помощи фракталов также можно смоделировать языки пламени. Пористые материалы хорошо представляются в фрактальной форме в связи с тем, что они имеют очень сложную геометрию. Для передачи данных на расстояния используются антенны, имеющие фрактальные формы, что сильно уменьшает их размеры и вес. Фракталы используются для описания кривизны поверхностей. Неровная поверхность характеризуется комбинацией из двух разных фракталов.

Многие объекты в природе обладают фрактальными свойствами, например, побережья, облака, кроны деревьев, снежинки, кровеносная система и система альвеол человека или животных.

Фракталы, особенно на плоскости, популярны благодаря сочетанию красоты с простотой построения при помощи компьютера.

Первые примеры самоподобных множеств с необычными свойствами появились в XIX веке (например, функция Больцано, функция Вейерштрасса, множество Кантора). Термин «фрактал» был введён Бенуа Мандельбротом в 1975 году и получил широкую популярность с выходом в 1977 году его книги «Фрактальная геометрия природы».

На рисунке слева в качестве простого примера приведен фрактал «пятиугольник Дарера», который выглядит, как связка пятиугольников, сжатых вместе. Фактически он образован при использовании пятиугольника в качестве инициатора и равнобедренных треугольников, отношение большей стороны к меньшей в которых в точности равно так называемой золотой пропорции (1.618033989 или 1/(2cos72°)) в качестве генератора. Эти треугольники вырезаются из середины каждого пятиугольника, в результате чего получается фигура, похожая на 5 маленьких пятиугольников, приклеенных к одному большому.

Теория хаоса говорит, что сложные нелинейные системы являются наследственно непредсказуемыми, но, в то же время утверждает, что способ выражения таких непредсказуемых систем оказывается верным не в точных равенствах, а в представлениях поведения системы - в графиках странных аттракторов, имеющих вид фракталов. Таким образом, теория хаоса, о которой многие думают как о непредсказуемости, оказывается наукой о предсказуемости даже в наиболее нестабильных системах. Учение о динамических системах показывает: простые уравнения могут порождать такое хаотическое поведение, при котором система никогда не возвращается в стабильное состояние и при этом не проявляется никакой закономерности. Часто такие системы ведут себя вполне нормально до некоторого определенного значения ключевого параметра, потом испытывают переход, в котором существует две возможности дальнейшего развития, потом четыре, и, наконец, хаотический набор возможностей.

Схемы процессов, протекающих в технических объектах, имеют четко выраженное фрактальное строение. Структура минимальной технической системы (ТС) подразумевает протекание в пределах ТС двух типов процессов – главного и обеспечивающих, причем это деление условно и относительно. Любой процесс может быть главным по отношению к обеспечивающим, а любой из обеспечивающих процессов может считаться главным по отношению к «своим» обеспечивающим процессам. Кружками на схеме обозначены физэффекты, обеспечивающие протекание тех процессов, для обеспечения которых не требуется специально создавать «свои» ТС. Эти процессы являются результатом взаимодействия между веществами, полями, веществами и полями. Если быть точным, то физэффект – это ТС, на принцип работы которой мы не можем повлиять, а в ее устройство не желаем или не имеем возможности вмешиваться.

Протекание главного процесса, изображенного на схеме, обеспечивается существованием трех обеспечивающих процессов, являющихся главными для порождающих их ТС. Справедливости ради отметим, что для функционирования даже минимальной ТС трех процессов явно недостаточно, т.е. схема очень и очень утрирована.

Всё далеко не так просто, как показано на схеме. Полезный (нужный человеку) процесс не может выполняться со стопроцентной эффективностью. Рассеиваемая энергия затрачивается на создание вредных процессов – нагрев, вибрации и т.п. В результате параллельно полезному процессу возникают вредные. Не всегда есть возможность заменить «плохой» процесс «хорошим», поэтому приходится организовывать новые процессы, направленные на компенсацию вредных для системы последствий. Характерный пример – необходимость борьбы с трением, вынуждающая организовывать хитроумные схемы смазки, применять дорогостоящие антифрикционные материалы или затрачивать время на смазку узлов и деталей или ее периодическую замену.

В связи с существованием неизбежного влияния переменчивой Среды полезный процесс может нуждаться в управлении. Управление может осуществляться как при помощи автоматических устройств, так и непосредственно человеком. Схема процессов фактически является набором специальных команд, т.е. алгоритмом. Сущность (описание) каждой команды составляет совокупность отдельно взятого полезного процесса, сопутствующих ему вредных процессов и набора необходимых управляющих процессов. В таком алгоритме набор обеспечивающих процессов является обычной подпрограммой – и здесь мы тоже обнаруживаем фрактал. Созданный четверть века назад метод Р.Коллера позволяет при создании систем обойтись достаточно ограниченным набором всего из 12 пар функций (процессов).

Самоподобные множества с необычными свойствами в математике

Начиная с конца XIX века, в математике появляются примеры самоподобных объектов с патологическими с точки зрения классического анализа свойствами. К ним можно отнести следующие:

    множество Кантора - нигде не плотное несчётное совершенное множество. Модифицировав процедуру, можно также получить нигде не плотное множество положительной длины.

    треугольник Серпинского («скатерть») и ковёр Серпинского - аналоги множества Кантора на плоскости.

    губка Менгера - аналог множества Кантора в трёхмерном пространстве;

    примеры Вейерштрасса и Ван дер Вардена нигде не дифференцируемой непрерывной функции.

    кривая Коха - несамопересекающаяся непрерывная кривая бесконечной длины, не имеющая касательной ни в одной точке;

    кривая Пеано - непрерывная кривая, проходящая через все точки квадрата.

    траектория броуновской частицы также с вероятностью 1 нигде не дифференцируема. Её хаусдорфова размерность равна двум

Рекурсивная процедура получения фрактальных кривых

Построение кривой Коха

Существует простая рекурсивная процедура получения фрактальных кривых на плоскости. Зададим произвольную ломаную с конечным числом звеньев, называемую генератором. Далее, заменим в ней каждый отрезок генератором (точнее, ломаной, подобной генератору). В получившейся ломаной вновь заменим каждый отрезок генератором. Продолжая до бесконечности, в пределе получим фрактальную кривую. На рисунке справа приведены четыре первых шага этой процедуры для кривой Коха.

Примерами таких кривых служат:

    кривая дракона,

    кривая Коха (снежинка Коха),

    кривая Леви,

    кривая Минковского,

    Кривая Гильберта,

    Ломаная (кривая) дракона (Фрактал Хартера-Хейтуэя),

    кривая Пеано.

С помощью похожей процедуры получается дерево Пифагора.

Фракталы как неподвижные точки сжимающих отображений

Свойство самоподобия можно математически строго выразить следующим образом. Пусть - сжимающие отображения плоскости. Рассмотрим следующее отображение на множестве всех компактных (замкнутых и ограниченных) подмножеств плоскости:

Можно показать, что отображение является сжимающим отображением на множестве компактов с метрикой Хаусдорфа. Следовательно, по теореме Банаха, это отображение имеет единственную неподвижную точку. Эта неподвижная точка и будет нашим фракталом.

Рекурсивная процедура получения фрактальных кривых, описанная выше, является частным случаем данной конструкции. В ней все отображения - отображения подобия, а - число звеньев генератора.

Для треугольника Серпинского и отображения , , - гомотетии с центрами в вершинах правильного треугольника и коэффициентом 1/2. Легко видеть, что треугольник Серпинского переходит в себя при отображении .

В случае, когда отображения - преобразования подобия с коэффициентами , размерность фрактала (при некоторых дополнительных технических условиях) может быть вычислена как решение уравнения . Так, для треугольника Серпинского получаем .

По той же теореме Банаха, начав с любого компактного множества и применяя к нему итерации отображения , мы получим последовательность компактов, сходящихся (в смысле метрики Хаусдорфа) к нашему фракталу.

Фракталы в комплексной динамике

Множество Жюлиа́

Ещё одно множество Жюлиа

Фракталы естественным образом возникают при изучении нелинейных динамических систем. Наиболее изучен случай, когда динамическая система задаётся итерациями многочлена или голоморфной функции комплексной переменной на плоскости. Первые исследования в этой области относятся к началу 20 века и связаны с именами Фату и Жюлиа.

Пусть F (z ) - многочлен, z 0 - комплексное число. Рассмотрим следующую последовательность: z 0 , z 1 =F (z 0), z 2 =F (F (z 0)) = F (z 1),z 3 =F (F (F (z 0)))=F (z 2), …

Нас интересует поведение этой последовательности при стремлении n к бесконечности. Эта последовательность может:

    стремиться к бесконечности,

    стремиться к конечному пределу,

    демонстрировать в пределе циклическое поведение, например: z 1 , z 2 , z 3 , z 1 , z 2 , z 3 , …

    вести себя хаотично, то есть не демонстрировать ни один из трёх упомянутых типов поведения.

Множества значений z 0 , для которых последовательность демонстрирует один конкретный тип поведения, а также множества точек бифуркации между различными типами, часто обладают фрактальными свойствами.

Так, множество Жюлиа - множество точек бифуркации для многочлена F (z )=z 2 +c (или другой похожей функции), то есть тех значений z 0 , для которых поведение последовательности {z n } может резко меняться при сколь угодно малых изменениях z 0 .

Другой вариант получения фрактальных множеств - введение параметра в многочлен F (z ) и рассмотрение множества тех значений параметра, при которых последовательность {z n } демонстрирует определённое поведение при фиксированном z 0 . Так, множество Мандельброта - это множество всех , при которых {z n } для F (z )=z 2 +c и z 0 не стремится к бесконечности.

Ещё один известный пример такого рода - бассейны Ньютона.

Популярно создание красивых графических образов на основе комплексной динамики путём раскрашивания точек плоскости в зависимости от поведения соответствующих динамических систем. Например, для дополнения множества Мандельброта можно раскрасить точки в зависимости от скорости стремления {z n } к бесконечности (определяемой, скажем, как наименьший номер n , при котором |z n | превысит фиксированную большую величину A .

Биоморфы - фракталы, построенные на основе комплексной динамики и напоминающие живые организмы.

Стохастические фракталы

Рандомизированный фрактал на основе множества Жюлиа

Природные объекты часто имеют фрактальную форму. Для их моделирования могут применяться стохастические (случайные) фракталы. Примеры стохастических фракталов:

    траектория броуновского движения на плоскости и в пространстве;

    граница траектории броуновского движения на плоскости. В 2001 году Лоулер, Шрамм и Вернер доказали предположение Мандельброта о том, что её размерность равна 4/3.

    эволюции Шрамма-Лёвнера - конформно-инвариантные фрактальные кривые, возникающие в критических двумерных моделяхстатистической механики, например, в модели Изинга и перколяции.

    различные виды рандомизированных фракталов, то есть фракталов, полученных с помощью рекурсивной процедуры, в которую на каждом шаге введён случайный параметр. Плазма - пример использования такого фрактала в компьютерной графике.

В природе

Вид спереди на трахею и бронхи

    Бронхиальное дерево

    Сеть кровеносных сосудов

Применение

Естественные науки

В физике фракталы естественным образом возникают при моделировании нелинейных процессов, таких, как турбулентное течение жидкости, сложные процессы диффузии-адсорбции, пламя, облака и т. п. Фракталы используются при моделировании пористых материалов, например, в нефтехимии. В биологии они применяются для моделирования популяций и для описания систем внутренних органов (система кровеносных сосудов).

Радиотехника

Фрактальные антенны

Использование фрактальной геометрии при проектировании антенных устройств было впервые применено американским инженером Натаном Коэном, который тогда жил в центреБостона, где была запрещена установка внешних антенн на здания. Натан вырезал из алюминиевой фольги фигуру в форме кривой Коха и наклеил её на лист бумаги, затем присоединил к приёмнику. Коэн основал собственную компанию и наладил их серийный выпуск.

Информатика

Сжатие изображений

Основная статья: Алгоритм фрактального сжатия

Фрактальное дерево

Существуют алгоритмы сжатия изображения с помощью фракталов. Они основаны на идее о том, что вместо самого изображения можно хранить сжимающее отображение, для которого это изображение (или некоторое близкое к нему) является неподвижной точкой. Один из вариантов данного алгоритма был использован [ источник не указан 895 дней ] фирмой Microsoft при издании своей энциклопедии, но большого распространения эти алгоритмы не получили.

Компьютерная графика

Ещё одно фрактальное дерево

Фракталы широко применяются в компьютерной графике для построения изображений природных объектов, таких как деревья, кусты, горные ландшафты, поверхности морей и так далее. Существует множество программ, служащих для генерации фрактальных изображений, см. Генератор фракталов (программа).

Децентрализованные сети

Система назначения IP-адресов в сети Netsukuku использует принцип фрактального сжатия информации для компактного сохранения информации об узлах сети. Каждый узел сети Netsukuku хранит всего 4 Кб информации о состоянии соседних узлов, при этом любой новый узел подключается к общей сети без необходимости в центральном регулировании раздачи IP-адресов, что, например, характерно для сети Интернет. Таким образом, принцип фрактального сжатия информации гарантирует полностью децентрализованную, а следовательно, максимально устойчивую работу всей сети.

Самые гениальные открытия в науке способны кардинально изменить человеческую жизнь. Изобретенная вакцина может спасти миллионы людей, создание оружия, наоборот, эти жизни отнимает. Совсем недавно (в масштабе человеческой эволюции) мы научились «укрощать» электричество — и теперь не можем себе представить жизнь без всех этих удобных устройств, использующих электроэнергию. Но есть и такие открытия, которым мало кто придает значение, хотя они тоже сильно влияют на нашу жизнь.

Одно из таких «незаметных» открытий — фракталы. Вам наверняка доводилось слышать это запоминающееся слово, но знаете ли вы, что оно означает и как много интересного скрыто в этом термине?

В каждом человеке заложена природная любознательность, стремление познавать окружающий его мир. И в этом стремлении человек старается придерживаться логики в суждениях. Анализируя процессы, происходящие вокруг него, он пытается найти логичность происходящего и вывести некоторую закономерность. Самые большие умы на планете заняты этой задачей. Грубо говоря, ученые ищут закономерность там, где ее быть не должно. Тем не менее даже в хаосе можно найти связь между событиями. И эта связь — фрактал.

Наша маленькая дочь, четырех с половиной лет, сейчас находится в том прекрасном возрасте, когда число вопросов «Почему?» многократно превышает число ответов, которые взрослые успевают давать. Не так давно, рассматривая поднятую с земли ветку, дочка вдруг заметила, что эта ветка, с сучками и ответвлениями, сама похожа на дерево. И, конечно, дальше последовал привычный вопрос «Почему?», на который родителям пришлось искать простое объяснение, понятное ребенку.

Обнаруженная ребенком схожесть отдельной веточки с целым деревом — это очень точное наблюдение, которое лишний раз свидетельствует о принципе рекурсивного самоподобия в природе. Очень многие органические и неорганические формы в природе формируются аналогично. Облака, морские раковины, «домик» улитки, кора и крона деревьев, кровеносная система и так далее — случайные формы всех этих объектов могут быть описаны фрактальным алгоритмом.

⇡ Бенуа Мандельброт: отец фрактальной геометрии

Само слово «фрактал» появилось благодаря гениальному ученому Бенуа Мандельброту (Benoît B. Mandelbrot).

Он сам придумал этот термин в семидесятых годах прошлого века, позаимствовав слово fractus из латыни, где оно буквально означает «ломанный» или «дробленный». Что же это такое? Сегодня под словом «фрактал» чаще всего принято подразумевать графическое изображение структуры, которая в более крупном масштабе подобна сама себе.

Математическая база для появления теории фракталов была заложена за много лет до рождения Бенуа Мандельброта, однако развиться она смогла лишь с появлением вычислительных устройств. В начале своей научной деятельности Бенуа работал в исследовательском центре компании IBM. В то время сотрудники центра трудились над передачей данных на расстояние. В ходе исследований ученые столкнулись с проблемой больших потерь, возникающих из-за шумовых помех. Перед Бенуа стояла сложная и очень важная задача — понять, как предсказать возникновение шумовых помех в электронных схемах, когда статистический метод оказывается неэффективным.

Просматривая результаты измерений шума, Мандельброт обратил внимание на одну странную закономерность — графики шумов в разном масштабе выглядели одинаково. Идентичная картина наблюдалась независимо от того, был ли это график шумов за один день, неделю или час. Стоило изменить масштаб графика, и картина каждый раз повторялась.

При жизни Бенуа Мандельброт неоднократно говорил, что он не занимается формулами, а просто играет с картинками. Этот человек мыслил очень образно, а любую алгебраическую задачу переводил в область геометрии, где, по его словам, правильный ответ всегда очевиден.

Неудивительно, что именно человек с таким богатым пространственным воображением стал отцом фрактальной геометрии. Ведь осознание сути фракталов приходит именно тогда, когда начинаешь изучать рисунки и вдумываться в смысл странных узоров-завихрений.

Фрактальный рисунок не имеет идентичных элементов, но обладает подобностью в любом масштабе. Построить такое изображение с высокой степенью детализации вручную ранее было просто невозможно, на это требовалось огромное количество вычислений. Например, французский математик Пьер Жозе Луи Фату (Pierre Joseph Louis Fatou) описал это множество более чем за семьдесят лет до открытия Бенуа Мандельбротом. Если же говорить про принципы самоподобия, то о них упоминалось еще в трудах Лейбница и Георга Кантора.

Один из первых рисунков фрактала был графической интерпретацией множества Мандельброта, которое родилось благодаря исследованиям Гастона Мориса Жюлиа (Gaston Maurice Julia).

Гастон Жюлиа (всегда в маске — травма с Первой мировой войны)

Этот французский математик задался вопросом, как будет выглядеть множество, если построить его на основе простой формулы, проитерированной циклом обратной связи. Если объяснить «на пальцах», это означает, что для конкретного числа мы находим по формуле новое значение, после чего подставляем его снова в формулу и получаем еще одно значение. Результат — большая последовательность чисел.

Чтобы получить полное представление о таком множестве, нужно проделать огромное количество вычислений — сотни, тысячи, миллионы. Вручную это сделать было просто нереально. Но когда в распоряжении математиков появились мощные вычислительные устройства, они смогли по-новому взглянуть на формулы и выражения, которые давно вызывали интерес. Мандельброт был первым, кто использовал компьютер для просчета классического фрактала. Обработав последовательность, состоящую из большого количества значений, Бенуа перенес результаты на график. Вот что он получил.

Впоследствии это изображение было раскрашено (например, один из способов окрашивания цветом — по числу итераций) и стало одним из самых популярных изображений, какие только были созданы человеком.

Как гласит древнее изречение, приписываемое Гераклиту Эфесскому, «В одну и ту же реку нельзя войти дважды». Оно как нельзя лучше подходит для трактования геометрии фракталов. Как бы детально мы ни рассматривали фрактальное изображение, мы все время будем видеть схожий рисунок.

Желающие посмотреть, как будет выглядеть изображение пространства Мандельброта при многократном увеличении, могут сделать это, загрузив анимационный GIF .

⇡ Лорен Карпентер: искусство, созданное природой

Теория фракталов скоро нашла практическое применение. Поскольку она тесно связана с визуализацией самоподобных образов, неудивительно, что первыми, кто взял на вооружение алгоритмы и принципы построения необычных форм, были художники.

Будущий сооснователь легендарной студии Pixar Лорен Карпентер (Loren C. Carpenter) в 1967 году начал работать в компании Boeing Computer Services, которая была одним из подразделений известной корпорации, занимающейся разработкой новых самолетов.

В 1977 году он создавал презентации с прототипами летающих моделей. В обязанности Лорена входила разработка изображений проектируемых самолетов. Он должен был создавать картинки новых моделей, показывая будущие самолеты с разных сторон. В какой-то момент в голову будущему основателю Pixar Animation Studios пришла в голову креативная идея использовать в качестве фона изображение гор. Сегодня такую задачу может решить любой школьник, но в конце семидесятых годов прошлого века компьютеры не могли справиться со столь сложными вычислениями — графических редакторов не было, не говоря уже о приложениях для трехмерной графики. В 1978 году Лорен случайно увидел в магазине книгу Бенуа Мандельброта «Фракталы: форма, случайность и размерность». В этой книге его внимание привлекло то, что Бенуа приводил массу примеров фрактальных форм в реальной жизни и доказывал, что их можно описать математическим выражением.

Такая аналогия была выбрана математиком не случайно. Дело в том, что как только он обнародовал свои исследования, ему пришлось столкнуться с целым шквалом критики. Главное, в чем упрекали его коллеги, — бесполезность разрабатываемой теории. «Да, — говорили они, — это красивые картинки, но не более. Практической ценности теория фракталов не имеет». Были также те, кто вообще считал, что фрактальные узоры — просто побочный результат работы «дьявольских машин», которые в конце семидесятых многим казались чем-то слишком сложным и неизученным, чтобы всецело им доверять. Мандельброт пытался найти очевидное применение теории фракталов, но, по большому счету, ему и не нужно было это делать. Последователи Бенуа Мандельброта в следующие 25 лет доказали огромную пользу от подобного «математического курьеза», и Лорен Карпентер был одним из первых, кто опробовал метод фракталов на практике.

Проштудировав книжку, будущий аниматор серьезно изучил принципы фрактальной геометрии и стал искать способ реализовать ее в компьютерной графике. Всего за три дня работы Лорен смог визуализировать реалистичное изображение горной системы на своем компьютере. Иными словами, он с помощью формул нарисовал вполне узнаваемый горный пейзаж.

Принцип, который использовал Лорен для достижения цели, был очень прост. Он состоял в том, чтобы разделять более крупную геометрическую фигуру на мелкие элементы, а те, в свою очередь, делить на аналогичные фигуры меньшего размера.

Используя более крупные треугольники, Карпентер дробил их на четыре мелких и затем повторял эту процедуру снова и снова, пока у него не получался реалистичный горный ландшафт. Таким образом, ему удалось стать первым художником, применившим в компьютерной графике фрактальный алгоритм для построения изображений. Как только стало известно о проделанной работе, энтузиасты по всему миру подхватили эту идею и стали использовать фрактальный алгоритм для имитации реалистичных природных форм.

Одна из первых визуализаций 3D по фрактальному алгоритму

Всего через несколько лет свои наработки Лорен Карпентер смог применить в куда более масштабном проекте. Аниматор создал на их основе двухминутный демонстрационный ролик Vol Libre, который был показан на Siggraph в 1980 году. Это видео потрясло всех, кто его видел, и Лоурен получил приглашение от Lucasfilm.

Анимация рендерилась на компьютере VAX-11/780 от Digital Equipment Corporation с тактовой частотой пять мегагерц, причем прорисовка каждого кадра занимала около получаса.

Работая для Lucasfilm Limited, аниматор создавал по той же схеме трехмерные ландшафты для второго полнометражного фильма саги Star Trek. В фильме «Гнев Хана» (The Wrath of Khan) Карпентер смог создать целую планету, используя тот же самый принцип фрактального моделирования поверхности.

В настоящее время все популярные приложения для создания трехмерных ландшафтов используют аналогичный принцип генерирования природных объектов. Terragen, Bryce, Vue и прочие трехмерные редакторы полагаются на фрактальный алгоритм моделирования поверхностей и текстур.

⇡ Фрактальные антенны: лучше меньше, да лучше

За последние полвека жизнь стремительно стала меняться. Большинство из нас принимает достижения современных технологий как должное. Ко всему, что делает жизнь более комфортной, привыкаешь очень быстро. Редко кто задается вопросами «Откуда это взялось?» и «Как оно работает?». Микроволновая печь разогревает завтрак — ну и прекрасно, смартфон дает возможность поговорить с другим человеком — отлично. Это кажется нам очевидной возможностью.

Но жизнь могла бы быть совершенно иной, если бы человек не искал объяснения происходящим событиям. Взять, например, сотовые телефоны. Помните выдвижные антенны на первых моделях? Они мешали, увеличивали размеры устройства, в конце концов, часто ломались. Полагаем, они навсегда канули в Лету, и отчасти виной тому… фракталы.

Фрактальные рисунки завораживают своими узорами. Они определенно напоминают изображения космических объектов — туманностей, скопления галактик и так далее. Поэтому вполне закономерно, что, когда Мандельброт озвучил свою теорию фракталов, его исследования вызвали повышенный интерес у тех, кто занимался изучением астрономии. Один из таких любителей по имени Натан Коэн (Nathan Cohen) после посещения лекции Бенуа Мандельброта в Будапеште загорелся идеей практического применения полученных знаний. Правда, сделал он это интуитивно, и не последнюю роль в его открытии сыграл случай. Будучи радиолюбителем, Натан стремился создать антенну, обладающую как можно более высокой чувствительностью.

Единственный способ улучшить параметры антенны, который был известен на то время, заключался в увеличении ее геометрических размеров. Однако владелец жилья в центре Бостона, которое арендовал Натан, был категорически против установки больших устройств на крыше. Тогда Натан стал экспериментировать с различными формами антенн, стараясь получить максимальный результат при минимальных размерах. Загоревшись идеей фрактальных форм, Коэн, что называется, наобум сделал из проволоки один из самых известных фракталов — «снежинку Коха». Шведский математик Хельге фон Кох (Helge von Koch) придумал эту кривую еще в 1904 году. Она получается путем деления отрезка на три части и замещения среднего сегмента равносторонним треугольником без стороны, совпадающей с этим сегментом. Определение немного сложное для восприятия, но на рисунке все ясно и просто.

Существуют также другие разновидности «кривой Коха», но примерная форма кривой остается похожей

Когда Натан подключил антенну к радиоприемному устройству, он был очень удивлен — чувствительность резко увеличилась. После серии экспериментов будущий профессор Бостонского университета понял, что антенна, сделанная по фрактальному рисунку, имеет высокий КПД и покрывает гораздо более широкий частотный диапазон по сравнению с классическими решениями. Кроме того, форма антенны в виде кривой фрактала позволяет существенно уменьшить геометрические размеры. Натан Коэн даже вывел теорему, доказывающую, что для создания широкополосной антенны достаточно придать ей форму самоподобной фрактальной кривой.

Автор запатентовал свое открытие и основал фирму по разработке и проектированию фрактальных антенн Fractal Antenna Systems , справедливо полагая, что в будущем благодаря его открытию сотовые телефоны смогут избавиться от громоздких антенн и станут более компактными.

В принципе, так и произошло. Правда, и по сей день Натан ведет судебную тяжбу с крупными корпорациями, которые незаконно используют его открытие для производства компактных устройств связи. Некоторые известные производители мобильных устройств, как, например, Motorola, уже пришли к мирному соглашению с изобретателем фрактальной антенны.

⇡ Фрактальные измерения: умом не понять

Этот вопрос Бенуа позаимствовал у знаменитого американского ученого Эдварда Каснера.

Последний, как и многие другие известные математики, очень любил общаться с детьми, задавая им вопросы и получая неожиданные ответы. Иногда это приводило к удивительным последствиям. Так, например, девятилетний племянник Эдварда Каснера придумал хорошо всем известное теперь слово «гугол», обозначающее единицу со ста нулями. Но вернемся к фракталам. Американский математик любил задавать вопрос, какова длина береговой линии США. Выслушав мнение собеседника, Эдвард сам говорил правильный ответ. Если измерять длину по карте ломаными отрезками, то результат окажется неточным, ведь береговая линия имеет большое количество неровностей. А что будет, если измерять максимально точно? Придется учитывать длину каждой неровности — нужно будет измерять каждый мыс, каждую бухту, скалу, длину скалистого уступа, камня на ней, песчинки, атома и так далее. Поскольку число неровностей стремится к бесконечности, измеренная длина береговой линии будет при измерении каждой новой неровности увеличиваться до бесконечности.

Чем меньше мера при измерении, тем больше измеряемая длина

Интересно, что, следуя подсказкам Эдварда, дети намного быстрее взрослых говорили правильное решение, в то время как у последних были проблемы с принятием такого невероятного ответа.

На примере этой задачи Мандельброт предложил использовать новый подход к измерениям. Поскольку береговая линия близка к фрактальной кривой, значит, к ней можно применить характеризующий параметр — так называемую фрактальную размерность.

Что такое обычная размерность — понятно любому. Если размерность равна единице, мы получаем прямую, если два — плоскую фигуру, три — объем. Однако такое понимание размерности в математике не срабатывает с фрактальными кривыми, где этот параметр имеет дробное значение. Фрактальную размерность в математике можно условно рассматривать как «неровность». Чем выше неровность кривой, тем больше ее фрактальная размерность. Кривая, обладающая, по Мандельброту, фрактальной размерностью выше ее топологической размерности, имеет аппроксимированную протяженность, которая не зависит от количества измерений.

В настоящее время ученые находят все больше и больше областей для применения теории фракталов. С помощью фракталов можно анализировать колебания котировок на бирже, исследовать всевозможные естественные процессы, как, например, колебание численности видов, или моделировать динамику потоков. Фрактальные алгоритмы могут быть использованы для сжатия данных, например для компрессии изображений. И кстати, чтобы получить на экране своего компьютера красивый фрактал, не обязательно иметь докторскую степень.

⇡ Фрактал в браузере

Пожалуй, один из самых простых способов получить фрактальный узор — воспользоваться онлайновым векторным редактором от молодого талантливого программиста Toby Schachman . В основе инструментария этого простого графического редактора лежит все тот же принцип самоподобия.

В вашем распоряжении имеется всего две простейших формы — четырехугольник и круг. Вы можете добавлять их на холст, масштабировать (чтобы масштабировать вдоль одной из осей, удерживайте клавишу Shift) и вращать. Перекрываясь по принципу булевых операций сложения, эти простейшие элементы образуют новые, менее тривиальные формы. Далее эти новые формы можно добавлять в проект, а программа будет повторять генерирование этих изображений до бесконечности. На любом этапе работы над фракталом можно возвращаться к любой составляющей сложной формы и редактировать ее положение и геометрию. Увлекательное занятие, особенно если учесть, что единственный инструмент, который вам нужен для творчества, — браузер. Если вам будет непонятен принцип работы с этим рекурсивным векторным редактором, советуем вам посмотреть видео на официальном сайте проекта, на котором подробно показывается весь процесс создания фрактала.

⇡ XaoS: фракталы на любой вкус

Многие графические редакторы имеют встроенные средства для создания фрактальных узоров. Однако эти инструменты обычно являются второстепенными и не позволяют выполнить тонкую настройку генерируемого фрактального узора. В тех случаях, когда необходимо построить математически точный фрактал, на помощь придет кроссплатформенный редактор XaoS . Эта программа дает возможность не только строить самоподобное изображение, но и выполнять с ним различные манипуляции. Например, в режиме реального времени вы можете совершить «прогулку» по фракталу, изменив его масштаб. Анимированное движение вдоль фрактала можно сохранить в виде файла XAF и затем воспроизвести в самой программе.

XaoS может загружать случайный набор параметров, а также использовать различные фильтры постобработки изображения — добавлять эффект смазанного движения, сглаживать резкие переходы между точками фрактала, имитировать 3D-картинку и так далее.

⇡ Fractal Zoomer: компактный фрактальный генератор

По сравнению с другими генераторами изображений фракталов имеет несколько преимуществ. Во-первых, он совсем небольшой по размеру и не требует установки. Во-вторых, в нем реализована возможность определять цветовую палитру рисунка. Вы можете выбирать оттенки в цветовых моделях RGB, CMYK, HVS и HSL.

Также очень удобно использовать опцию случайного подбора цветовых оттенков и функцию инвертирования всех цветов на картинке. Для настройки цвета имеется функция цикличного перебора оттенков — при включении соответствующего режима программа анимирует изображение, циклично меняя на нем цвета.

Fractal Zoomer может визуализировать 85 различных фрактальных функций, причем в меню программы наглядно показываются формулы. Фильтры для постобработки изображения в программе имеются, хотя и в небольшом количестве. Каждый назначенный фильтр можно в любой момент отменить.

⇡ Mandelbulb3D: редактор трехмерных фракталов

Когда употребляется термин «фрактал», чаще всего подразумевается плоское двухмерное изображение. Однако фрактальная геометрия выходит за рамки 2D-измерения. В природе можно найти как примеры плоских фрактальных форм, скажем, геометрию молнии, так и трехмерные объемные фигуры. Фрактальные поверхности могут быть трехмерными, и одна из очень наглядных иллюстраций 3D-фракталов в повседневной жизни — кочан капусты. Наверное, лучше всего фракталы можно разглядеть в сорте романеско — гибриде цветной капусты и брокколи.

А еще этот фрактал можно съесть

Создавать трехмерные объекты с похожей формой умеет программа Mandelbulb3D . Чтобы получить трехмерную поверхность с использованием фрактального алгоритма, авторы данного приложения, Дениэл Уайт (Daniel White) и Пол Ниландер (Paul Nylander), преобразовали множество Мандельброта в сферические координаты. Созданная ими программа Mandelbulb3D представляет собой самый настоящий трехмерный редактор, который моделирует фрактальные поверхности разных форм. Поскольку в природе мы часто наблюдаем фрактальные узоры, то искусственно созданный фрактальный трехмерный объект кажется невероятно реалистичным и даже «живым».

Он может походить на растение, может напоминать странное животное, планету или что-нибудь другое. Этот эффект усиливается благодаря продвинутому алгоритму визуализации, который дает возможность получать реалистичные отражения, просчитывать прозрачность и тени, имитировать эффект глубины резкости и так далее. В Mandelbulb3D имеется огромное количество настроек и параметров визуализации. Можно управлять оттенками источников света, выбирать фон и уровень детализации моделируемого объекта.

Фрактальный редактор Incendia поддерживает двойное сглаживание изображения, содержит библиотеку из полусотни различных трехмерных фракталов и имеет отдельный модуль для редактирования базовых форм.

Приложение использует фрактальный скриптинг, с помощью которого можно самостоятельно описывать новые типы фрактальных конструкций. В Incendia есть редакторы текстур и материалов, а движок визуализации позволяет использовать эффекты объемного тумана и различные шейдеры. В программе реализована опция сохранения буфера при длительном рендеринге, поддерживается создание анимации.

Incendia позволяет экспортировать фрактальную модель в популярные форматы трехмерной графики — OBJ и STL. В состав Incendia включена небольшая утилита Geometrica — специальный инструмент для настройки экспорта фрактальной поверхности в трехмерную модель. С помощью этой утилиты можно определять разрешение 3D-поверхности, указывать число фрактальных итераций. Экспортированные модели могут быть использованы в 3D-проектах при работе с такими трехмерными редакторами, как Blender, 3ds max и прочие.

В последнее время работа над проектом Incendia несколько затормозилась. На данный момент автор ищет спонсоров, которые помогли бы ему развивать программу.

Если вам не хватает фантазии нарисовать в этой программе красивый трехмерный фрактал — не беда. Воспользуйтесь библиотекой параметров, которая находится в папке INCENDIA_EX\parameters. С помощью файлов PAR вы сможете быстро найти самые необычные фрактальные формы, в том числе и анимированные.

⇡ Aural: как поют фракталы

Мы обычно не рассказываем о проектах, работа над которыми только ведется, однако в данном случае мы должны сделать исключение, уж очень это необычное приложение. Проект под названием Aural придумал тот же человек, что и Incendia. Правда, на этот раз программа не визуализирует фрактальное множество, а озвучивает его, превращая в электронную музыку. Идея очень любопытная, особенно если учесть необычные свойства фракталов. Aural — это аудиоредактор, генерирующий мелодии с использованием фрактальных алгоритмов, то есть, по сути, это звуковой синтезатор-секвенсор.

Последовательность звуков, выдаваемая этой программой, необычна и… красива. Она вполне может пригодиться для написания современных ритмов и, как нам кажется, особенно хорошо подходит для создания звуковых дорожек к заставкам телевизионных и радиопередач, а также «петель» фоновой музыки к компьютерным играм. Рамиро пока не предоставил демонстрационной версии своей программы, но обещает, что, когда он это сделает, для того, чтобы работать с Aural, не нужно будет изучать теорию фракталов — достаточно просто поиграться с параметрами алгоритма генерирования последовательности нот. Послушать, как звучат фракталы, и .

Фракталы: музыкальная пауза

Вообще-то фракталы могут помочь написать музыку даже без программного обеспечения. Но это может сделать только тот, кто по-настоящему проникнут идеей природной гармонии и при этом не превратился в несчастного «ботана». Тут есть смысл брать пример с музыканта по имени Джонатан Колтон (Jonathan Coulton), который, помимо всего прочего, пишет композиции для журнала Popular Science. И не в пример другим исполнителям, Колтон все свои произведения публикует под лицензией Creative Commons Attribution-Noncommercial, которая (при использовании в некоммерческих целях) предусматривает свободное копирование, распространение, передачу произведения другим лицам, а также его изменение (создание производных произведения), чтобы приспособить его к своим задачам.

У Джонатана Колтона, конечно же, есть песня про фракталы.

⇡ Заключение

Во всем, что нас окружает, мы часто видим хаос, но на самом деле это не случайность, а идеальная форма, разглядеть которую нам помогают фракталы. Природа — лучший архитектор, идеальный строитель и инженер. Она устроена очень логично, и если где-то мы не видим закономерности, это означает, что ее нужно искать в другом масштабе. Люди все лучше и лучше это понимают, стараясь во многом подражать естественным формам. Инженеры проектируют акустические системы в виде раковины, создают антенны с геометрией снежинок и так далее. Уверены, что фракталы хранят в себе еще немало секретов, и многие из них человеку еще лишь предстоит открыть.

Редакция NNN случайно наткнулась на весьма интересный материал, представленный в блоге пользователя xtsarx, посвященный элементам теории фракталов и ее практическому применению. Как известно, терия фракталов играет далеко не последнюю роль в физике и химии наносистем. Внеся свою лепту в этот добротный материал, изложенный на языке, доступном для широкого круга читателей и подкрепленный обильным количеством графического и даже видео материала, мы представляем его Вашему вниманию. Надеемся, что читателям NNN этот материал будет интересным.

Природа так загадочна, что чем больше изучаешь ее, тем больше вопросов появляется… Ночные молнии – синие «струи» ветвящихся разрядов, морозные узоры на окне, снежинки, горы, облака, кора дерева – все это выходит за рамки привычной евклидовой геометрии. Мы не можем описать камень или границы острова с помощью прямых, кружков и треугольников. И здесь нам приходят на помощь фракталы . Что же это за знакомые незнакомцы?

«Под микроскопом он открыл, что на блохе
Живет блоху кусающая блошка;
На блошке той блошинка-крошка,
В блошинку же вонзает зуб сердито
Блошиночка, и так ad infinitum». Д.Свифт.

Немного из истории

Первые идеи фрактальной геометрии возникли в 19 веке. Кантор с помощью простой рекурсивной (повторяющейся) процедуры превратил линию в набор несвязанных точек (так называемая Пыль Кантора). Он брал линию и удалял центральную треть и после этого повторял то же самое с оставшимися отрезками.

Рис. 1. Кривая пеано 1,2–5 итерации.

Пеано нарисовал особый вид линии. Пеано поступил следущим образом : На первом шаге он брал прямую линию и заменял ее на 9 отрезков длинной в 3 раза меньшей, чем длинна исходной линии. Далее он делал то же самое с каждым отрезком получившейся линии. И так до бесконечности. Ее уникальность в том, что она заполняет всю плоскость. Доказано, что для каждой точки на плоскости можно найти точку, принадлежащую линии Пеано. Кривая Пеано и пыль Кантора выходили за рамки обычных геометрических объектов. Они не имели четкой размерности . Пыль Кантора строилась вроде бы на основании одномерной прямой, но состояла из точек (размерность 0). А кривая Пеано строилась на основании одномерной линии, а в результате получалась плоскость. Во многих других областях науки появлялись задачи, решение которых приводило к странным результатам, на подобие описанных выше (Броуновское движение, цены на акции). Каждый из нас может проделать эту процедуру…

Отец Фракталов

Вплоть до 20 века шло накопление данных о таких странных объектах, без какой-либо попытки их систематизировать. Так было, пока за них не взялся Бенуа Мандельброт отец современной фрактальной геометрии и слова фрактал .

Рис. 2. Бенуа Мандельброт.

Работая в IBM математическим аналитиком, он изучал шумы в электронных схемах, которые невозможно было описать с помощью статистики. Постепенно сопоставляя факты, он пришел к открытию нового направления в математике – фрактальной геометрии .

Термин «фрактал» Б.Мандельброт ввёл в 1975 г.. Согласно Мандельброту, фракталом (от лат. «fractus» – дробный, ломанный, разбитый) называется структура, состоящая из частей, подобных целому . Свойство самоподобия резко отличает фракталы от объектов классической геометрии. Термин самоподобие означает наличие тонкой, повторяющейся структуры, как на самых малых масштабах объекта, так и в макромаштабе .

Рис. 3. К определению понятия «фрактал».

Примерами самоподобия служат : кривые Коха, Леви, Минковского, треугольник Серпиньского, губка Менгера, дерево Пифагора и др.

С математической точки зрения, фрактал – это, прежде всего, множество с дробной (промежуточной, «не целой») размерностью . В то время как гладкая евклидова линия заполняет в точности одномерное пространство, фрактальная кривая выходит за пределы одномерного пространства, вторгается за границы в двумерное пространство.Таким образом, фрактальная размерность кривой Коха будет находиться между 1 и 2. Это, прежде всего, означает, что у фрактального объекта невозможно точно измерить его длину! Из этих геометрических фракталов очень интересным и довольно знаменитым является первый – снежинка Коха .

Рис. 4. К определению понятия «фрактал».

Строится она на основе равностороннего треугольника . Каждая линия которого заменяется на 4 линии каждая длиной в 1/3 исходной. Таким образом, с каждой итерацией длинна кривой увеличивается на треть. И если мы сделаем бесконечное число итераций – получим фрактал – снежинку Коха бесконечной длины. Получается, что наша бесконечная кривая покрывает ограниченную площадь. Попробуйте сделать то же самое методами и фигурами из евклидовой геометрии.
Размерность снежинки Коха (при увеличении снежинки в 3 раза ее длина возрастает в 4 раза) D=log(4)/log(3)=1.2619.

О самом фрактале

Фракталы находят все большее и большее применение в науке и технике. Основная причина этого заключается в том, что они описывают реальный мир иногда даже лучше, чем традиционная физика или математика. Можно до бесконечности приводить примеры фрактальных объектов в природе, – это и облака, и хлопья снега, и горы, и вспышка молнии, и наконец, цветная капуста. Фрактал как природный объект – это вечное непрерывное движение, новое становление и развитие.

Рис. 5. Фракталы в экономике.

Кроме того, фракталы находят применение в децентрализованных компьютерных сетях и «фрактальных антеннах» . Весьма интересны и перспективны для моделирования различных стохастических (не детерминированных) «случайных» процессов, так называемые «броуновские фракталы». В случае нанотехнологий фракталы тоже играют важную роль , поскольку из-за своей иерархической самоорганизации многие наносистемы обладают нецелочисленной размерностью , то есть являются по своей геометрической, физико-химической или функциональной природе фракталами. Например, ярким примером химических фрактальных систем являются молекулы «дендримеров» . Кроме того, принцип фрактальности (самоподобной, скейлинговой структуры) является отражением иерархичности строения системы и поэтому является более общим и универсальным, чем стандартные подходы к описанию строения и свойств наносистем.

Рис. 6. Молекулы «дендримеров».

Рис. 7. Графическая модель коммуникации в архитектурно-строительном процессе. Первый уровень взаимодействия с позиций микропроцессов.

Рис. 8. Графическая модель коммуникации в архитектурно-строительном процессе. Второй уровень взаимодействия с позиций макропроцессов (фрагмент модели).

Рис. 9. Графическая модель коммуникации в архитектурно-строительном процессе. Второй уровень взаимодействия с позиций макропроцессов (модель целиком)

Рис. 10. Плоскостное развитие графической модели. Первое гомеостатичное состояние.

Фракталы и золотое сечение «Фракталы» часть 1 «Фракталы» часть 2 «Фракталы» часть 3 «Фракталы» часть 4 «Фракталы» часть 5

Фотогалерея красивых и необычных фракталов

Рис. 11.

Рис. 12.

Рис. 13.

Рис. 14.

Рис. 15.

Рис. 16.

Рис. 17.

Рис. 18.

Рис. 19.

Рис. 20.

Рис. 21.

Рис. 22.

Рис. 23.

Рис. 24.

Рис. 25.

Рис. 26.

Рис. 27.

Рис. 28.

Рис. 29.

Рис. 30.

Рис. 31.

Рис. 32.

Рис. 33.

Рис. 34.

Рис. 35.

Коррекция и правка выполнены Филипповым Ю.П.

Что общего у дерева, берега моря, облака или кровеносных сосудов у нас в руке? На первый взгляд может показаться, что все эти объекты ничто не объединяет. Однако на самом деле существует одно свойство структуры, присущее всем перечисленным предметам: они самоподобны. От ветки, как и от ствола дерева, отходят отростки поменьше, от них — еще меньшие, и т. д. , то есть ветка подобна всему дереву. Подобным же образом устроена и кровеносная система: от артерий отходят артериолы, а от них — мельчайшие капилляры, по которым кислород поступает в органы и ткани. Посмотрим на космические снимки морского побережья: мы увидим заливы и полуострова; взглянем на него же, но с высоты птичьего полета: нам будут видны бухты и мысы; теперь представим себе, что мы стоим на пляже и смотрим себе под ноги: всегда найдутся камешки, которые дальше выдаются в воду, чем остальные. То есть береговая линия при увеличении масштаба остается похожей на саму себя. Это свойство объектов американский (правда, выросший во Франции) математик Бенуа Мандельброт назвал фрактальностью, а сами такие объекты — фракталами (от латинского fractus — изломанный).

У этого понятия нет строгого определения. Поэтому слово «фрактал» не является математическим термином. Обычно фракталом называют геометрическую фигуру, которая удовлетворяет одному или нескольким из следующих свойств: Обладает сложной структурой при любом увеличении масштаба (в отличие от, например, прямой, любая часть которой является простейшей геометрической фигурой — отрезком). Является (приближенно) самоподобной. Обладает дробной хаусдорфовой (фрактальной) размерностью, которая больше топологической. Может быть построена рекурсивными процедурами.

Геометрия и алгебра

Изучение фракталов на рубеже XIX и XX веков носило скорее эпизодический, нежели систематический характер, потому что раньше математики в основном изучали «хорошие» объекты, которые поддавались исследованию при помощи общих методов и теорий. В 1872 году немецкий математик Карл Вейерштрасс строит пример непрерывной функции, которая нигде не дифференцируема. Однако его построение было целиком абстрактно и трудно для восприятия. Поэтому в 1904 году швед Хельге фон Кох придумал непрерывную кривую, которая нигде не имеет касательной, причем ее довольно просто нарисовать. Оказалось, что она обладает свойствами фрактала. Один из вариантов этой кривой носит название «снежинка Коха».

Идеи самоподобия фигур подхватил француз Поль Пьер Леви, будущий наставник Бенуа Мандельброта. В 1938 году вышла его статья «Плоские и пространственные кривые и поверхности, состоящие из частей, подобных целому», в которой описан еще один фрактал — С-кривая Леви. Все эти вышеперечисленные фракталы можно условно отнести к одному классу конструктивных (геометрических) фракталов.


Другой класс — динамические (алгебраические) фракталы, к которым относится и множество Мандельброта. Первые исследования в этом направлении начались в начале XX века и связаны с именами французских математиков Гастона Жулиа и Пьера Фату. В 1918 году вышел почти двухсотстраничный мемуар Жулиа, посвященный итерациям комплексных рациональных функций, в котором описаны множества Жулиа — целое семейство фракталов, близко связанных с множеством Мандельброта. Этот труд был удостоен приза Французской академии, однако в нем не содержалось ни одной иллюстрации, так что оценить красоту открытых объектов было невозможно. Несмотря на то что это работа прославила Жулиа среди математиков того времени, о ней довольно быстро забыли. Вновь внимание к ней обратилось лишь полвека спустя с появлением компьютеров: именно они сделали видимыми богатство и красоту мира фракталов.

Фрактальные размерности

Как известно, размерность (число измерений) геометрической фигуры — это число координат, необходимых для определения положения лежащей на этой фигуре точки.
Например, положение точки на кривой определяется одной координатой, на поверхности (не обязательно плоскости) двумя координатами, в трёхмерном пространстве тремя координатами.
С более общей математической точки зрения, можно определить размерность таким образом: увеличение линейных размеров, скажем, в два раза, для одномерных (с топологической точки зрения) объектов (отрезок) приводит к увеличению размера (длины) в два раза, для двумерных (квадрат) такое же увеличение линейных размеров приводит к увеличению размера (площади) в 4 раза, для трехмерных (куб) — в 8 раз. То есть «реальную» (т.н. Хаусдорфову) размерность можно подсчитать в виде отношения логарифма увеличения «размера» объекта к логарифму увеличения его линейного размера. То есть для отрезка D=log (2)/log (2)=1, для плоскости D=log (4)/log (2)=2, для объема D=log (8)/log (2)=3.
Подсчитаем теперь размерность кривой Коха, для построения которой единичный отрезок делят на три равные части и заменяют средний интервал равносторонним треугольником без этого сегмента. При увеличении линейных размеров минимального отрезка в три раза длина кривой Коха возрастает в log (4)/log (3)~1,26. То есть размерность кривой Коха — дробная!

Наука и искусство

В 1982 году вышла книга Мандельброта «Фрактальная геометрия природы», в которой автор собрал и систематизировал практически всю имевшуюся на тот момент информацию о фракталах и в легкой и доступной манере изложил ее. Основной упор в своем изложении Мандельброт сделал не на тяжеловесные формулы и математические конструкции, а на геометрическую интуицию читателей. Благодаря иллюстрациям, полученным при помощи компьютера, и историческим байкам, которыми автор умело разбавил научную составляющую монографии, книга стала бестселлером, а фракталы стали известны широкой публике. Их успех среди нематематиков во многом обусловлен тем, что с помощью весьма простых конструкций и формул, которые способен понять и старшеклассник, получаются удивительные по сложности и красоте изображения. Когда персональные компьютеры стали достаточно мощными, появилось даже целое направление в искусстве — фрактальная живопись, причем заниматься ею мог практически любой владелец компьютера. Сейчас в интернете можно легко найти множество сайтов, посвященных этой теме.


Схема получения кривой Коха

Война и мир

Как уже отмечалось выше, один из природных объектов, имеющих фрактальные свойства, — это береговая линия. С ним, а точнее, с попыткой измерить его длину, связана одна интересная история, которая легла в основу научной статьи Мандельброта, а также описана в его книге «Фрактальная геометрия природы». Речь идет об эксперименте, который поставил Льюис Ричардсон — весьма талантливый и эксцентричный математик, физик и метеоролог. Одним из направлений его исследований была попытка найти математическое описание причин и вероятности возникновения вооруженного конфликта между двумя странами. В числе параметров, которые он учитывал, была протяженность общей границы двух враждующих стран. Когда он собирал данные для численных экспериментов, то обнаружил, что в разных источниках данные об общей границе Испании и Португалии сильно отличаются. Это натолкнуло его на следующее открытие: длина границ страны зависит от линейки, которой мы их измеряем. Чем меньше масштаб, тем длиннее получается граница. Это происходит из-за того, что при большем увеличении становится возможным учитывать все новые и новые изгибы берега, которые раньше игнорировались из-за грубости измерений. И если при каждом увеличении масштаба будут открываться ранее не учтенные изгибы линий, то получится, что длина границ бесконечна! Правда, на самом деле этого не происходит — у точности наших измерений есть конечный предел. Этот парадокс называется эффектом Ричардсона.


Конструктивные (геометрические) фракталы

Алгоритм построения конструктивного фрактала в общем случае таков. Прежде всего нам нужны две подходящие геометрические фигуры, назовем их основой и фрагментом. На первом этапе изображается основа будущего фрактала. Затем некоторые ее части заменяются фрагментом, взятым в подходящем масштабе, — это первая итерация построения. Затем у полученной фигуры снова некоторые части меняются на фигуры, подобные фрагменту, и т. д. Если продолжить этот процесс до бесконечности, то в пределе получится фрактал.

Рассмотрим этот процесс на примере кривой Коха (см. врезку на предыдущей странице). За основу кривой Коха можно взять любую кривую (для «снежинки Коха» это треугольник). Но мы ограничимся простейшим случаем — отрезком. Фрагмент — ломаная, изображенная сверху на рисунке. После первой итерации алгоритма в данном случае исходный отрезок совпадет с фрагментом, затем каждый из составляющих его отрезков сам заменится на ломаную, подобную фрагменту, и т. д. На рисунке показаны первые четыре шага этого процесса.


Языком математики: динамические (алгебраические) фракталы

Фракталы этого типа возникают при исследовании нелинейных динамических систем (отсюда и название). Поведение такой системы можно описать комплексной нелинейной функцией (многочленом) f (z). Возьмем какую-нибудь начальную точку z0 на комплексной плоскости (см. врезку). Теперь рассмотрим такую бесконечную последовательность чисел на комплексной плоскости, каждое следующее из которых получается из предыдущего: z0, z1=f (z0), z2=f (z1), … zn+1=f (zn). В зависимости от начальной точки z0 такая последовательность может вести себя по‑разному: стремиться к бесконечности при n -> ∞; сходиться к какой-то конечной точке; циклически принимать ряд фиксированных значений; возможны и более сложные варианты.

Комплексные числа

Комплексное число — это число, состоящее из двух частей — действительной и мнимой, то есть формальная сумма x + iy (x и y здесь — вещественные числа). i — это т.н. мнимая единица, то есть то есть число, удовлетворяющее уравнению i^ 2 = -1. Над комплексными числами определены основные математические операции — сложение, умножение, деление, вычитание (не определена только операция сравнения). Для отображения комплексных чисел часто используется геометрическое представление — на плоскости (ее называют комплексной) по оси абсцисс откладывают действительную часть, а по оси ординат — мнимую, при этом комплексному числу будет соответствовать точка с декартовыми координатами x и y.

Таким образом, любая точка z комплексной плоскости имеет свой характер поведения при итерациях функции f (z), а вся плоскость делится на части. При этом точки, лежащие на границах этих частей, обладают таким свойством: при сколь угодно малом смещении характер их поведения резко меняется (такие точки называют точками бифуркации). Так вот, оказывается, что множества точек, имеющих один конкретный тип поведения, а также множества бифуркационных точек часто имеют фрактальные свойства. Это и есть множества Жулиа для функции f (z).

Семейство драконов

Варьируя основу и фрагмент, можно получить потрясающее разнообразие конструктивных фракталов.
Более того, подобные операции можно производить и в трехмерном пространстве. Примерами объемных фракталов могут служить «губка Менгера», «пирамида Серпинского» и другие.
К конструктивным фракталам относят и семейство драконов. Иногда их называют по имени первооткрывателей «драконами Хейвея-Хартера» (своей формой они напоминают китайских драконов). Существует несколько способов построения этой кривой. Самый простой и наглядный из них такой: нужно взять достаточно длинную полоску бумаги (чем тоньше бумага, тем лучше), и согнуть ее пополам. Затем снова согнуть ее вдвое в том же направлении, что и в первый раз. После нескольких повторений (обычно через пять-шесть складываний полоска становится слишком толстой, чтобы ее можно было аккуратно гнуть дальше) нужно разогнуть полоску обратно, причем стараться, чтобы в местах сгибов образовались углы в 90˚. Тогда в профиль получится кривая дракона. Разумеется, это будет лишь приближение, как и все наши попытки изобразить фрактальные объекты. Компьютер позволяет изобразить гораздо больше шагов этого процесса, и в результате получается очень красивая фигура.

Множество Мандельброта строится несколько иначе. Рассмотрим функцию fc (z) = z 2 +с, где c — комплексное число. Построим последовательность этой функции с z0=0, в зависимости от параметра с она может расходиться к бесконечности или оставаться ограниченной. При этом все значения с, при которых эта последовательность ограничена, как раз и образуют множество Мандельброта. Оно было детально изучено самим Мандельбротом и другими математиками, которые открыли немало интересных свойств этого множества.

Видно, что определения множеств Жулиа и Мандельброта похожи друг на друга. На самом деле эти два множества тесно связаны. А именно, множество Мандельброта — это все значения комплексного параметра c, при которых множество Жулиа fc (z) связно (множество называется связным, если его нельзя разбить на две непересекающиеся части, с некоторыми дополнительными условиями).


Фракталы и жизнь

В наши дни теория фракталов находит широкое применение в различных областях человеческой деятельности. Помимо чисто научного объекта для исследований и уже упоминавшейся фрактальной живописи, фракталы используются в теории информации для сжатия графических данных (здесь в основном применяется свойство самоподобия фракталов — ведь чтобы запомнить небольшой фрагмент рисунка и преобразования, с помощью которых можно получить остальные части, требуется гораздо меньше памяти, чем для хранения всего файла). Добавляя в формулы, задающие фрактал, случайные возмущения, можно получить стохастические фракталы, которые весьма правдоподобно передают некоторые реальные объекты — элементы рельефа, поверхность водоемов, некоторые растения, что с успехом применяется в физике, географии и компьютерной графике для достижения большего сходства моделируемых предметов с настоящими. В радиоэлектронике в последнее десятилетие начали выпускать антенны, имеющие фрактальную форму. Занимая мало места, они обеспечивают вполне качественный прием сигнала. Экономисты используют фракталы для описания кривых колебания курсов валют (это свойство было открыто Мандельбротом более 30 лет назад). На этом мы завершим эту небольшую экскурсию в удивительный по красоте и разнообразию мир фракталов.

Зачастую гениальные открытия, совершенные в науке, способны кардинально изменять нашу жизнь. Так, например, изобретение вакцины может спасти множество людей, а создание нового вооружения приводит к убийству. Буквально вчера (в масштабе истории) человек «укротил» электричество, а сегодня уже не может представить свою жизнь без него. Однако существуют и такие открытия, которые, что называется, остаются в тени, причем несмотря на то, что они также оказывают то или иное влияние на нашу жизнь. Одним из таких открытий стал фрактал. Большинство людей даже не слышали о таком понятии и не смогут объяснить его значение. В этой статье мы попробуем разобраться с вопросом о том, что такое фрактал, рассмотрим значение этого термина с позиции науки и природы.

Порядок в хаосе

Для того чтобы понять, что такое фрактал, следовало бы начать разбор полетов с позиции математики, однако прежде чем углубляться в мы немного пофилософствуем. Каждому человеку присуща природная любознательность, благодаря которой он и познает окружающий мир. Зачастую в своем стремлении познания он старается оперировать логикой в суждениях. Так, анализируя процессы, которые происходят вокруг, он пытается вычислить взаимосвязи и вывести определенные закономерности. Самые большие умы планеты заняты решением этих задач. Грубо говоря, наши ученые ищут закономерности там, где их нет, да и быть не должно. И тем не менее даже в хаосе есть связь между теми или иными событиями. Вот этой связью и выступает фрактал. В качестве примера рассмотрим сломанную ветку, валяющуюся на дороге. Если внимательно к ней присмотреться, то мы увидим, что она со всеми своими ответвлениями и сучками сама похожа на дерево. Вот эта схожесть отдельной части с единым целым свидетельствует о так называемом принципе рекурсивного самоподобия. Фракталы в природе можно найти сплошь и рядом, ведь многие неорганические и органические формы формируются аналогично. Это и облака, и морские раковины, и раковины улиток, и кроны деревьев, и даже кровеносная система. Данный список можно продолжать до бесконечности. Все эти случайные формы с легкостью описывает фрактальный алгоритм. Вот мы подошли к тому, чтобы рассмотреть, что такое фрактал с позиции точных наук.

Немного сухих фактов

Само слово «фрактал» с латыни переводится как "частичный", "разделенный", "раздробленный", а что касается содержания этого термина, то формулировки как таковой не существует. Обычно его трактуют как самоподобное множество, часть целого, которая повторяется своей структурой на микроуровне. Этот термин придумал в семидесятых годах ХХ века Бенуа Мандельброт, который признан отцом Сегодня под понятием фрактала подразумевают графическое изображение некой структуры, которая при увеличенном масштабе будет подобна сама себе. Однако математическая база для создания этой теории была заложена еще до рождения самого Мандельброта, а вот развиваться она не могла, пока не появились электронные вычислительные машины.

Историческая справка, или Как все начиналось

На рубеже 19-20 веков изучение природы фракталов носило эпизодический характер. Это объясняется тем, что математики предпочитали изучать объекты, поддающиеся исследованию, на основе общих теорий и методов. В 1872 году немецким математиком К. Вейерштрассом был построен пример непрерывной функции, нигде не дифференцируемой. Однако это построение оказалась целиком абстрактным и трудным для восприятия. Дальше пошел швед Хельге фон Кох, который в 1904 году построил непрерывную кривую, не имеющую нигде касательной. Ее довольно легко нарисовать, и, как оказалось, она характеризуется фрактальными свойствами. Один из вариантов данной кривой назвали в честь ее автора - «снежинка Коха». Далее идею самоподобия фигур развивал будущий наставник Б. Мандельброта француз Поль Леви. В 1938 году он опубликовал статью «Плоские и пространственные кривые и поверхности, состоящие из частей, подобных целому». В ней он описал новый вид - С-кривую Леви. Все вышеперечисленные фигуры условно относятся к такому виду, как геометрические фракталы.

Динамические, или алгебраические фракталы

К данному классу относится множество Мандельброта. Первыми исследователями этого направления стали французские математики Пьер Фату и Гастон Жюлиа. В 1918 году Жюлиа опубликовал работу, в основе которой лежало изучение итераций рациональных комплексных функций. Здесь он описал семейство фракталов, которые близко связаны с множеством Мандельброта. Невзирая на то что данная работа прославила автора среди математиков, о ней быстро забыли. И только спустя полвека благодаря компьютерам труд Жюлиа получил вторую жизнь. ЭВМ позволили сделать видимым для каждого человека ту красоту и богатство мира фракталов, которые могли «видеть» математики, отображая их через функции. Мандельброт стал первым, кто использовал компьютер для проведения вычислений (вручную такой объем невозможно провести), позволивших построить изображение этих фигур.

Человек с пространственным воображением

Мандельброт начинал свою научную карьеру в исследовательском центре IBM. Изучая возможности передачи данных на большие расстояния, ученые столкнулись с фактом больших потерь, которые возникали из-за шумовых помех. Бенуа искал пути решения этой проблемы. Просматривая результаты измерений, он обратил внимание на странную закономерность, а именно: графики шумов выглядели одинаково в разном масштабе времени.

Аналогичная картина наблюдалась как для периода в один день, так и для семи дней или для часа. Сам Бенуа Мандельброт часто повторял, что он работает не с формулами, а играет с картинками. Этот ученый отличался образным мышлением, любую алгебраическую задачу он переводил в геометрическую область, где правильный ответ очевиден. Так что неудивительно, отличающийся богатым и стал отцом фрактальной геометрии. Ведь осознание данной фигуры может прийти только тогда, когда изучаешь рисунки и вдумываешься в смысл этих странных завихрений, образующих узор. Фрактальные рисунки не имеют идентичных элементов, однако обладают подобностью при любом масштабе.

Жюлиа - Мандельброт

Одним из первых рисунков этой фигуры была графическая интерпретация множества, которая родилась благодаря работам Гастона Жюлиа и была доработана Мандельбротом. Гастон пытался представить, как выглядит множество, построенное на базе простой формулы, которая проитерирована циклом обратной связи. Попробуем сказанное объяснить человеческим языком, так сказать, на пальцах. Для конкретного числового значения с помощью формулы находим новое значение. Подставляем его в формулу и находим следующее. В результате получается большая Для представления такого множества требуется проделать эту операцию огромное количество раз: сотни, тысячи, миллионы. Это и проделал Бенуа. Он обработал последовательность и перенес результаты в графическую форму. Впоследствии он раскрасил полученную фигуру (каждый цвет соответствует определенному числу итераций). Данное графическое изображение получило имя «фрактал Мандельброта».

Л. Карпентер: искусство, созданное природой

Теория фракталов довольно быстро нашла практическое применение. Так как она весьма тесно связана с визуализацией самоподобных образов, то первыми, кто взял на вооружение принципы и алгоритмы построения этих необычных форм, стали художники. Первым из них стал будущий основатель студии Pixar Лорен Карпентер. Работая над презентацией прототипов самолетов, ему в голову пришла идея в качестве фона использовать изображение гор. Сегодня с такой задачей сможет справиться практически каждый пользователь компьютера, а в семидесятых годах прошлого века ЭВМ были не в состоянии выполнять такие процессы, ведь графических редакторов и приложений для трехмерной графики на тот момент еще не было. И вот Лорену попалась книга Мандельброта «Фракталы: форма, случайность и размерность». В ней Бенуа приводил множество примеров, показывая, что существуют фракталы в природе (фыва), он описывал их разнообразную форму и доказывал, что они легко описываются математическими выражениями. Данную аналогию математик приводил в качестве аргумента полезности разрабатываемой им теории в ответ на шквал критики от своих коллег. Они утверждали, что фрактал - это всего лишь красивая картинка, не имеющая никакой ценности, являющаяся побочным результатом работы электронных машин. Карпентер решил опробовать этот метод на практике. Внимательно изучив книгу, будущий аниматор стал искать способ реализации фрактальной геометрии в компьютерной графике. Ему понадобилось всего три дня, чтобы визуализировать вполне реалистичное изображение горного ландшафта на своем компьютере. И сегодня этот принцип широко используется. Как оказалось, создание фракталов не занимает много времени и сил.

Решение Карпентера

Принцип, использованный Лореном, оказался прост. Он состоит в том, чтобы разделить более крупные на мелкие элементы, а те - на аналогичные меньшего размера, и так далее. Карпентер, используя крупные треугольники, дробил их на 4 мелких, и так далее, до тех пор, пока у него не получился реалистичный горный пейзаж. Таким образом, он стал первым художником, который применил фрактальный алгоритм в компьютерной графике для построения требуемого изображения. Сегодня этот принцип используется для имитации различных реалистичных природных форм.

Первая 3D-визуализация на фрактальном алгоритме

Уже через несколько лет Лорен применил свои наработки в масштабном проекте - анимационном ролике Vol Libre, показанном на Siggraph в 1980 году. Это видео потрясло многих, и его создатель был приглашен работать в Lucasfilm. Здесь аниматор смог реализоваться в полной мере, он создал трехмерные ландшафты (целую планету) для полнометражного фильма "Star Trek". Любая современная программа («Фракталы») или приложение для создания трехмерной графики (Terragen, Vue, Bryce) использует все тот же алгоритм для моделирования текстур и поверхностей.

Том Беддард

В прошлом лазерный физик, а ныне цифровых дел мастер и художник, Беддард создал ряд весьма интригующих геометрических фигур, которые назвал фракталы Фаберже. Внешне они напоминают декоративные яйца русского ювелира, на них такой же блестящий замысловатый узор. Беддард использовал шаблонный метод для создания своих цифровых визуализаций моделей. Полученные изделия поражают своей красотой. Хоть многие отказываются сравнивать продукт ручной работы с компьютерной программой, однако следует признать, что полученные формы необычайно красивы. Изюминка заключается в том, что построить такой фрактал сможет любой желающий, воспользовавшись программной библиотекой WebGL. Она позволяет исследовать в реальном времени различные фрактальные структуры.

Фракталы в природе

Мало кто обращает внимание, но эти удивительные фигуры присутствуют повсюду. Природа создана из самоподобных фигур, просто мы этого не замечаем. Достаточно посмотреть через увеличительное стекло на нашу кожу или листок дерева, и мы увидим фракталы. Или взять, к примеру, ананас или даже хвост павлина - они состоят из подобных фигур. А сорт капусты брокколи Романеску вообще поражает своим видом, ведь это поистине можно назвать чудом природы.

Музыкальная пауза

Оказывается, фракталы - это не только геометрические фигуры, они могут быть и звуками. Так, музыкант Джонатан Колтон пишет музыку с помощью фрактальных алгоритмов. Он утверждает, соответствует природной гармонии. Композитор все свои произведения публикует под лицензией CreativeCommons Attribution-Noncommercial, которая предусматривает свободное распространение, копирование, передачу произведений другими лицами.

Индикатор-фрактал

Данная методика нашла весьма неожиданное применение. На ее основе создан инструмент для анализа рынка фондовой биржи, и, как следствие, его начали применять на рынке «Форекс». Сейчас индикатор-фрактал находится на всех торговых платформах и применяется в торговой технике, которую называют ценовым прорывом. Разработал эту методику Билл Вильямс. Как комментирует свое изобретение автор, данный алгоритм является сочетанием нескольких «свечей», в котором центральная отражает максимальную либо, наоборот, минимальную экстремальную точку.

В заключение

Вот мы и рассмотрели, что такое фрактал. Оказывается, в хаосе, который окружает нас, на самом деле существуют идеальные формы. Природа является лучшим архитектором, идеальным строителем и инженером. Она устроена весьма логично, и если мы не можем найти закономерность, это не значит, что ее нет. Может быть, нужно искать в ином масштабе. С уверенностью можно сказать, что фракталы хранят еще немало секретов, которые нам только предстоит открыть.



Планирование беременности