Примеры фракталов. Фракталы

Редакция NNN случайно наткнулась на весьма интересный материал, представленный в блоге пользователя xtsarx, посвященный элементам теории фракталов и ее практическому применению. Как известно, терия фракталов играет далеко не последнюю роль в физике и химии наносистем. Внеся свою лепту в этот добротный материал, изложенный на языке, доступном для широкого круга читателей и подкрепленный обильным количеством графического и даже видео материала, мы представляем его Вашему вниманию. Надеемся, что читателям NNN этот материал будет интересным.

Природа так загадочна, что чем больше изучаешь ее, тем больше вопросов появляется… Ночные молнии – синие «струи» ветвящихся разрядов, морозные узоры на окне, снежинки, горы, облака, кора дерева – все это выходит за рамки привычной евклидовой геометрии. Мы не можем описать камень или границы острова с помощью прямых, кружков и треугольников. И здесь нам приходят на помощь фракталы . Что же это за знакомые незнакомцы?

«Под микроскопом он открыл, что на блохе
Живет блоху кусающая блошка;
На блошке той блошинка-крошка,
В блошинку же вонзает зуб сердито
Блошиночка, и так ad infinitum». Д.Свифт.

Немного из истории

Первые идеи фрактальной геометрии возникли в 19 веке. Кантор с помощью простой рекурсивной (повторяющейся) процедуры превратил линию в набор несвязанных точек (так называемая Пыль Кантора). Он брал линию и удалял центральную треть и после этого повторял то же самое с оставшимися отрезками.

Рис. 1. Кривая пеано 1,2–5 итерации.

Пеано нарисовал особый вид линии. Пеано поступил следущим образом : На первом шаге он брал прямую линию и заменял ее на 9 отрезков длинной в 3 раза меньшей, чем длинна исходной линии. Далее он делал то же самое с каждым отрезком получившейся линии. И так до бесконечности. Ее уникальность в том, что она заполняет всю плоскость. Доказано, что для каждой точки на плоскости можно найти точку, принадлежащую линии Пеано. Кривая Пеано и пыль Кантора выходили за рамки обычных геометрических объектов. Они не имели четкой размерности . Пыль Кантора строилась вроде бы на основании одномерной прямой, но состояла из точек (размерность 0). А кривая Пеано строилась на основании одномерной линии, а в результате получалась плоскость. Во многих других областях науки появлялись задачи, решение которых приводило к странным результатам, на подобие описанных выше (Броуновское движение, цены на акции). Каждый из нас может проделать эту процедуру…

Отец Фракталов

Вплоть до 20 века шло накопление данных о таких странных объектах, без какой-либо попытки их систематизировать. Так было, пока за них не взялся Бенуа Мандельброт отец современной фрактальной геометрии и слова фрактал .

Рис. 2. Бенуа Мандельброт.

Работая в IBM математическим аналитиком, он изучал шумы в электронных схемах, которые невозможно было описать с помощью статистики. Постепенно сопоставляя факты, он пришел к открытию нового направления в математике – фрактальной геометрии .

Термин «фрактал» Б.Мандельброт ввёл в 1975 г.. Согласно Мандельброту, фракталом (от лат. «fractus» – дробный, ломанный, разбитый) называется структура, состоящая из частей, подобных целому . Свойство самоподобия резко отличает фракталы от объектов классической геометрии. Термин самоподобие означает наличие тонкой, повторяющейся структуры, как на самых малых масштабах объекта, так и в макромаштабе .

Рис. 3. К определению понятия «фрактал».

Примерами самоподобия служат : кривые Коха, Леви, Минковского, треугольник Серпиньского, губка Менгера, дерево Пифагора и др.

С математической точки зрения, фрактал – это, прежде всего, множество с дробной (промежуточной, «не целой») размерностью . В то время как гладкая евклидова линия заполняет в точности одномерное пространство, фрактальная кривая выходит за пределы одномерного пространства, вторгается за границы в двумерное пространство.Таким образом, фрактальная размерность кривой Коха будет находиться между 1 и 2. Это, прежде всего, означает, что у фрактального объекта невозможно точно измерить его длину! Из этих геометрических фракталов очень интересным и довольно знаменитым является первый – снежинка Коха .

Рис. 4. К определению понятия «фрактал».

Строится она на основе равностороннего треугольника . Каждая линия которого заменяется на 4 линии каждая длиной в 1/3 исходной. Таким образом, с каждой итерацией длинна кривой увеличивается на треть. И если мы сделаем бесконечное число итераций – получим фрактал – снежинку Коха бесконечной длины. Получается, что наша бесконечная кривая покрывает ограниченную площадь. Попробуйте сделать то же самое методами и фигурами из евклидовой геометрии.
Размерность снежинки Коха (при увеличении снежинки в 3 раза ее длина возрастает в 4 раза) D=log(4)/log(3)=1.2619.

О самом фрактале

Фракталы находят все большее и большее применение в науке и технике. Основная причина этого заключается в том, что они описывают реальный мир иногда даже лучше, чем традиционная физика или математика. Можно до бесконечности приводить примеры фрактальных объектов в природе, – это и облака, и хлопья снега, и горы, и вспышка молнии, и наконец, цветная капуста. Фрактал как природный объект – это вечное непрерывное движение, новое становление и развитие.

Рис. 5. Фракталы в экономике.

Кроме того, фракталы находят применение в децентрализованных компьютерных сетях и «фрактальных антеннах» . Весьма интересны и перспективны для моделирования различных стохастических (не детерминированных) «случайных» процессов, так называемые «броуновские фракталы». В случае нанотехнологий фракталы тоже играют важную роль , поскольку из-за своей иерархической самоорганизации многие наносистемы обладают нецелочисленной размерностью , то есть являются по своей геометрической, физико-химической или функциональной природе фракталами. Например, ярким примером химических фрактальных систем являются молекулы «дендримеров» . Кроме того, принцип фрактальности (самоподобной, скейлинговой структуры) является отражением иерархичности строения системы и поэтому является более общим и универсальным, чем стандартные подходы к описанию строения и свойств наносистем.

Рис. 6. Молекулы «дендримеров».

Рис. 7. Графическая модель коммуникации в архитектурно-строительном процессе. Первый уровень взаимодействия с позиций микропроцессов.

Рис. 8. Графическая модель коммуникации в архитектурно-строительном процессе. Второй уровень взаимодействия с позиций макропроцессов (фрагмент модели).

Рис. 9. Графическая модель коммуникации в архитектурно-строительном процессе. Второй уровень взаимодействия с позиций макропроцессов (модель целиком)

Рис. 10. Плоскостное развитие графической модели. Первое гомеостатичное состояние.

Фракталы и золотое сечение «Фракталы» часть 1 «Фракталы» часть 2 «Фракталы» часть 3 «Фракталы» часть 4 «Фракталы» часть 5

Фотогалерея красивых и необычных фракталов

Рис. 11.

Рис. 12.

Рис. 13.

Рис. 14.

Рис. 15.

Рис. 16.

Рис. 17.

Рис. 18.

Рис. 19.

Рис. 20.

Рис. 21.

Рис. 22.

Рис. 23.

Рис. 24.

Рис. 25.

Рис. 26.

Рис. 27.

Рис. 28.

Рис. 29.

Рис. 30.

Рис. 31.

Рис. 32.

Рис. 33.

Рис. 34.

Рис. 35.

Коррекция и правка выполнены Филипповым Ю.П.

Фрактал

Фракта́л (лат. fractus -дроблёный,сломанный,разбитый) - геометрическая фигура,обладающая свойством самоподобия, то есть составленная из нескольких частей, каждая из которых подобна всей фигуре целиком.В математике под фракталами понимают множества точек в евклидовом пространстве, имеющие дробную метрическую размерность (в смысле Минковского или Хаусдорфа), либо метрическую размерность, отличную от топологической. Фрактазм - самостоятельная точная наука изучения и составления фракталов.

Другими словами фракталы – геометрические объекты с дробной размерностью. К примеру, размерность линии – 1, площади – 2, объема – 3. У фрактала же значение размерности может быть между 1 и 2 или между 2 и 3. К примеру, фрактальная размерность скомканного бумажного шарика приблизительно равна 2,5. В математике существует специальная сложная формула для вычисления размерности фракталов. Разветвления трубочек трахей, листья на деревьях, вены в руке, река - это фракталы. Говоря простым языком, фрактал - это геометрическая фигура, определенная часть которой повторяется снова и снова, изменяясь в размерах - это и есть принцип самоподобия. Фракталы подобны самим себе, они похожи сами на себя на всех уровнях (т.е. в любом масштабе). Существует много различных типов фракталов. В принципе, можно утверждать, что всё, что существует в реальном мире, является фракталом, будь то облако или молекула кислорода.

Слово «хаос» наводит на мысли о чем-то непредсказуемом, но на самом деле хаос достаточно упорядочен и подчиняется определенным законам. Цель изучения хаоса и фракталов - предсказать закономерности, которые, на первый взгляд, могут казаться непредсказуемыми и абсолютно хаотическими.

Пионером в этой области познания был франко-американский математик, профессор Бенуа Б. Мандельброт. В середине 1960-х им разработана фрактальная геометрия, целью которой был анализ ломаных, морщинистых и нечетких форм. Множество Мандельброта (показано на рисунке) - первая ассоциация, возникающая у человека, когда он слышит слово «фрактал». К слову, Мандельброт определил, что фрактальная размерность береговой линии Англии составляет 1,25.

Фракталы находят всё большее применение в науке. Они описывают реальный мир даже лучше, чем традиционная физика или математика. Броуновское движение - это, например, случайное и хаотическое движение частичек пыли, взвешенных в воде. Этот тип движения, возможно, является аспектом фрактальной геометрии, имеющий наибольшее практическое использование. Случайное броуновское движение имеет частотную характеристику, которая может быть использована для предсказания явлений, включающих большие количества данных и статистики. К примеру, Мандельброт предсказал при помощи броуновского движения изменение цен на шерсть.

Слово «фрактал» может употребляться не только как математический термин. Фракталом в прессе и научно-популярной литературе могут называть фигуры, обладающие какими-либо из перечисленных ниже свойств:

    Обладает нетривиальной структурой на всех масштабах. В этом отличие от регулярных фигур (таких, как окружность, эллипс, график гладкой функции): если мы рассмотрим небольшой фрагмент регулярной фигуры в очень крупном масштабе, он будет похож на фрагмент прямой. Для фрактала увеличение масштаба не ведёт к упрощению структуры, на всех шкалах мы увидим одинаково сложную картину.

    Является самоподобной или приближённо самоподобной.

    Обладает дробной метрической размерностью или метрической размерностью, превосходящей топологическую.

Наиболее полезным использованием фракталов в компьютерной технике является фрактальное сжатие данных. При этом картинки сжимаются гораздо лучше, чем это делается обычными методами - до 600:1. Другое преимущество фрактального сжатия в том, что при увеличении не наблюдается эффекта пикселизации, резко ухудшающего картинку. Мало того, фрактально сжатая картинка после увеличения часто выглядит даже лучше, чем до него. Cпециалистам в области компьютерной техники известно также, что фракталы бесконечной сложности и красоты могут быть сгенерированы простыми формулами. Индустрия кино для создания реалистичных элементов ландшафта (облака, скалы и тени) широко использует технологию фрактальной графики.

Изучение турбулентности в потоках очень хорошо подстраивается под фракталы. Это позволяет лучше понять динамику сложных потоков. При помощи фракталов также можно смоделировать языки пламени. Пористые материалы хорошо представляются в фрактальной форме в связи с тем, что они имеют очень сложную геометрию. Для передачи данных на расстояния используются антенны, имеющие фрактальные формы, что сильно уменьшает их размеры и вес. Фракталы используются для описания кривизны поверхностей. Неровная поверхность характеризуется комбинацией из двух разных фракталов.

Многие объекты в природе обладают фрактальными свойствами, например, побережья, облака, кроны деревьев, снежинки, кровеносная система и система альвеол человека или животных.

Фракталы, особенно на плоскости, популярны благодаря сочетанию красоты с простотой построения при помощи компьютера.

Первые примеры самоподобных множеств с необычными свойствами появились в XIX веке (например, функция Больцано, функция Вейерштрасса, множество Кантора). Термин «фрактал» был введён Бенуа Мандельбротом в 1975 году и получил широкую популярность с выходом в 1977 году его книги «Фрактальная геометрия природы».

На рисунке слева в качестве простого примера приведен фрактал «пятиугольник Дарера», который выглядит, как связка пятиугольников, сжатых вместе. Фактически он образован при использовании пятиугольника в качестве инициатора и равнобедренных треугольников, отношение большей стороны к меньшей в которых в точности равно так называемой золотой пропорции (1.618033989 или 1/(2cos72°)) в качестве генератора. Эти треугольники вырезаются из середины каждого пятиугольника, в результате чего получается фигура, похожая на 5 маленьких пятиугольников, приклеенных к одному большому.

Теория хаоса говорит, что сложные нелинейные системы являются наследственно непредсказуемыми, но, в то же время утверждает, что способ выражения таких непредсказуемых систем оказывается верным не в точных равенствах, а в представлениях поведения системы - в графиках странных аттракторов, имеющих вид фракталов. Таким образом, теория хаоса, о которой многие думают как о непредсказуемости, оказывается наукой о предсказуемости даже в наиболее нестабильных системах. Учение о динамических системах показывает: простые уравнения могут порождать такое хаотическое поведение, при котором система никогда не возвращается в стабильное состояние и при этом не проявляется никакой закономерности. Часто такие системы ведут себя вполне нормально до некоторого определенного значения ключевого параметра, потом испытывают переход, в котором существует две возможности дальнейшего развития, потом четыре, и, наконец, хаотический набор возможностей.

Схемы процессов, протекающих в технических объектах, имеют четко выраженное фрактальное строение. Структура минимальной технической системы (ТС) подразумевает протекание в пределах ТС двух типов процессов – главного и обеспечивающих, причем это деление условно и относительно. Любой процесс может быть главным по отношению к обеспечивающим, а любой из обеспечивающих процессов может считаться главным по отношению к «своим» обеспечивающим процессам. Кружками на схеме обозначены физэффекты, обеспечивающие протекание тех процессов, для обеспечения которых не требуется специально создавать «свои» ТС. Эти процессы являются результатом взаимодействия между веществами, полями, веществами и полями. Если быть точным, то физэффект – это ТС, на принцип работы которой мы не можем повлиять, а в ее устройство не желаем или не имеем возможности вмешиваться.

Протекание главного процесса, изображенного на схеме, обеспечивается существованием трех обеспечивающих процессов, являющихся главными для порождающих их ТС. Справедливости ради отметим, что для функционирования даже минимальной ТС трех процессов явно недостаточно, т.е. схема очень и очень утрирована.

Всё далеко не так просто, как показано на схеме. Полезный (нужный человеку) процесс не может выполняться со стопроцентной эффективностью. Рассеиваемая энергия затрачивается на создание вредных процессов – нагрев, вибрации и т.п. В результате параллельно полезному процессу возникают вредные. Не всегда есть возможность заменить «плохой» процесс «хорошим», поэтому приходится организовывать новые процессы, направленные на компенсацию вредных для системы последствий. Характерный пример – необходимость борьбы с трением, вынуждающая организовывать хитроумные схемы смазки, применять дорогостоящие антифрикционные материалы или затрачивать время на смазку узлов и деталей или ее периодическую замену.

В связи с существованием неизбежного влияния переменчивой Среды полезный процесс может нуждаться в управлении. Управление может осуществляться как при помощи автоматических устройств, так и непосредственно человеком. Схема процессов фактически является набором специальных команд, т.е. алгоритмом. Сущность (описание) каждой команды составляет совокупность отдельно взятого полезного процесса, сопутствующих ему вредных процессов и набора необходимых управляющих процессов. В таком алгоритме набор обеспечивающих процессов является обычной подпрограммой – и здесь мы тоже обнаруживаем фрактал. Созданный четверть века назад метод Р.Коллера позволяет при создании систем обойтись достаточно ограниченным набором всего из 12 пар функций (процессов).

Самоподобные множества с необычными свойствами в математике

Начиная с конца XIX века, в математике появляются примеры самоподобных объектов с патологическими с точки зрения классического анализа свойствами. К ним можно отнести следующие:

    множество Кантора - нигде не плотное несчётное совершенное множество. Модифицировав процедуру, можно также получить нигде не плотное множество положительной длины.

    треугольник Серпинского («скатерть») и ковёр Серпинского - аналоги множества Кантора на плоскости.

    губка Менгера - аналог множества Кантора в трёхмерном пространстве;

    примеры Вейерштрасса и Ван дер Вардена нигде не дифференцируемой непрерывной функции.

    кривая Коха - несамопересекающаяся непрерывная кривая бесконечной длины, не имеющая касательной ни в одной точке;

    кривая Пеано - непрерывная кривая, проходящая через все точки квадрата.

    траектория броуновской частицы также с вероятностью 1 нигде не дифференцируема. Её хаусдорфова размерность равна двум

Рекурсивная процедура получения фрактальных кривых

Построение кривой Коха

Существует простая рекурсивная процедура получения фрактальных кривых на плоскости. Зададим произвольную ломаную с конечным числом звеньев, называемую генератором. Далее, заменим в ней каждый отрезок генератором (точнее, ломаной, подобной генератору). В получившейся ломаной вновь заменим каждый отрезок генератором. Продолжая до бесконечности, в пределе получим фрактальную кривую. На рисунке справа приведены четыре первых шага этой процедуры для кривой Коха.

Примерами таких кривых служат:

    кривая дракона,

    кривая Коха (снежинка Коха),

    кривая Леви,

    кривая Минковского,

    Кривая Гильберта,

    Ломаная (кривая) дракона (Фрактал Хартера-Хейтуэя),

    кривая Пеано.

С помощью похожей процедуры получается дерево Пифагора.

Фракталы как неподвижные точки сжимающих отображений

Свойство самоподобия можно математически строго выразить следующим образом. Пусть - сжимающие отображения плоскости. Рассмотрим следующее отображение на множестве всех компактных (замкнутых и ограниченных) подмножеств плоскости:

Можно показать, что отображение является сжимающим отображением на множестве компактов с метрикой Хаусдорфа. Следовательно, по теореме Банаха, это отображение имеет единственную неподвижную точку. Эта неподвижная точка и будет нашим фракталом.

Рекурсивная процедура получения фрактальных кривых, описанная выше, является частным случаем данной конструкции. В ней все отображения - отображения подобия, а - число звеньев генератора.

Для треугольника Серпинского и отображения , , - гомотетии с центрами в вершинах правильного треугольника и коэффициентом 1/2. Легко видеть, что треугольник Серпинского переходит в себя при отображении .

В случае, когда отображения - преобразования подобия с коэффициентами , размерность фрактала (при некоторых дополнительных технических условиях) может быть вычислена как решение уравнения . Так, для треугольника Серпинского получаем .

По той же теореме Банаха, начав с любого компактного множества и применяя к нему итерации отображения , мы получим последовательность компактов, сходящихся (в смысле метрики Хаусдорфа) к нашему фракталу.

Фракталы в комплексной динамике

Множество Жюлиа́

Ещё одно множество Жюлиа

Фракталы естественным образом возникают при изучении нелинейных динамических систем. Наиболее изучен случай, когда динамическая система задаётся итерациями многочлена или голоморфной функции комплексной переменной на плоскости. Первые исследования в этой области относятся к началу 20 века и связаны с именами Фату и Жюлиа.

Пусть F (z ) - многочлен, z 0 - комплексное число. Рассмотрим следующую последовательность: z 0 , z 1 =F (z 0), z 2 =F (F (z 0)) = F (z 1),z 3 =F (F (F (z 0)))=F (z 2), …

Нас интересует поведение этой последовательности при стремлении n к бесконечности. Эта последовательность может:

    стремиться к бесконечности,

    стремиться к конечному пределу,

    демонстрировать в пределе циклическое поведение, например: z 1 , z 2 , z 3 , z 1 , z 2 , z 3 , …

    вести себя хаотично, то есть не демонстрировать ни один из трёх упомянутых типов поведения.

Множества значений z 0 , для которых последовательность демонстрирует один конкретный тип поведения, а также множества точек бифуркации между различными типами, часто обладают фрактальными свойствами.

Так, множество Жюлиа - множество точек бифуркации для многочлена F (z )=z 2 +c (или другой похожей функции), то есть тех значений z 0 , для которых поведение последовательности {z n } может резко меняться при сколь угодно малых изменениях z 0 .

Другой вариант получения фрактальных множеств - введение параметра в многочлен F (z ) и рассмотрение множества тех значений параметра, при которых последовательность {z n } демонстрирует определённое поведение при фиксированном z 0 . Так, множество Мандельброта - это множество всех , при которых {z n } для F (z )=z 2 +c и z 0 не стремится к бесконечности.

Ещё один известный пример такого рода - бассейны Ньютона.

Популярно создание красивых графических образов на основе комплексной динамики путём раскрашивания точек плоскости в зависимости от поведения соответствующих динамических систем. Например, для дополнения множества Мандельброта можно раскрасить точки в зависимости от скорости стремления {z n } к бесконечности (определяемой, скажем, как наименьший номер n , при котором |z n | превысит фиксированную большую величину A .

Биоморфы - фракталы, построенные на основе комплексной динамики и напоминающие живые организмы.

Стохастические фракталы

Рандомизированный фрактал на основе множества Жюлиа

Природные объекты часто имеют фрактальную форму. Для их моделирования могут применяться стохастические (случайные) фракталы. Примеры стохастических фракталов:

    траектория броуновского движения на плоскости и в пространстве;

    граница траектории броуновского движения на плоскости. В 2001 году Лоулер, Шрамм и Вернер доказали предположение Мандельброта о том, что её размерность равна 4/3.

    эволюции Шрамма-Лёвнера - конформно-инвариантные фрактальные кривые, возникающие в критических двумерных моделяхстатистической механики, например, в модели Изинга и перколяции.

    различные виды рандомизированных фракталов, то есть фракталов, полученных с помощью рекурсивной процедуры, в которую на каждом шаге введён случайный параметр. Плазма - пример использования такого фрактала в компьютерной графике.

В природе

Вид спереди на трахею и бронхи

    Бронхиальное дерево

    Сеть кровеносных сосудов

Применение

Естественные науки

В физике фракталы естественным образом возникают при моделировании нелинейных процессов, таких, как турбулентное течение жидкости, сложные процессы диффузии-адсорбции, пламя, облака и т. п. Фракталы используются при моделировании пористых материалов, например, в нефтехимии. В биологии они применяются для моделирования популяций и для описания систем внутренних органов (система кровеносных сосудов).

Радиотехника

Фрактальные антенны

Использование фрактальной геометрии при проектировании антенных устройств было впервые применено американским инженером Натаном Коэном, который тогда жил в центреБостона, где была запрещена установка внешних антенн на здания. Натан вырезал из алюминиевой фольги фигуру в форме кривой Коха и наклеил её на лист бумаги, затем присоединил к приёмнику. Коэн основал собственную компанию и наладил их серийный выпуск.

Информатика

Сжатие изображений

Основная статья: Алгоритм фрактального сжатия

Фрактальное дерево

Существуют алгоритмы сжатия изображения с помощью фракталов. Они основаны на идее о том, что вместо самого изображения можно хранить сжимающее отображение, для которого это изображение (или некоторое близкое к нему) является неподвижной точкой. Один из вариантов данного алгоритма был использован [ источник не указан 895 дней ] фирмой Microsoft при издании своей энциклопедии, но большого распространения эти алгоритмы не получили.

Компьютерная графика

Ещё одно фрактальное дерево

Фракталы широко применяются в компьютерной графике для построения изображений природных объектов, таких как деревья, кусты, горные ландшафты, поверхности морей и так далее. Существует множество программ, служащих для генерации фрактальных изображений, см. Генератор фракталов (программа).

Децентрализованные сети

Система назначения IP-адресов в сети Netsukuku использует принцип фрактального сжатия информации для компактного сохранения информации об узлах сети. Каждый узел сети Netsukuku хранит всего 4 Кб информации о состоянии соседних узлов, при этом любой новый узел подключается к общей сети без необходимости в центральном регулировании раздачи IP-адресов, что, например, характерно для сети Интернет. Таким образом, принцип фрактального сжатия информации гарантирует полностью децентрализованную, а следовательно, максимально устойчивую работу всей сети.

Что общего у дерева, берега моря, облака или кровеносных сосудов у нас в руке? На первый взгляд может показаться, что все эти объекты ничто не объединяет. Однако на самом деле существует одно свойство структуры, присущее всем перечисленным предметам: они самоподобны. От ветки, как и от ствола дерева, отходят отростки поменьше, от них — еще меньшие, и т. д. , то есть ветка подобна всему дереву. Подобным же образом устроена и кровеносная система: от артерий отходят артериолы, а от них — мельчайшие капилляры, по которым кислород поступает в органы и ткани. Посмотрим на космические снимки морского побережья: мы увидим заливы и полуострова; взглянем на него же, но с высоты птичьего полета: нам будут видны бухты и мысы; теперь представим себе, что мы стоим на пляже и смотрим себе под ноги: всегда найдутся камешки, которые дальше выдаются в воду, чем остальные. То есть береговая линия при увеличении масштаба остается похожей на саму себя. Это свойство объектов американский (правда, выросший во Франции) математик Бенуа Мандельброт назвал фрактальностью, а сами такие объекты — фракталами (от латинского fractus — изломанный).

У этого понятия нет строгого определения. Поэтому слово «фрактал» не является математическим термином. Обычно фракталом называют геометрическую фигуру, которая удовлетворяет одному или нескольким из следующих свойств: Обладает сложной структурой при любом увеличении масштаба (в отличие от, например, прямой, любая часть которой является простейшей геометрической фигурой — отрезком). Является (приближенно) самоподобной. Обладает дробной хаусдорфовой (фрактальной) размерностью, которая больше топологической. Может быть построена рекурсивными процедурами.

Геометрия и алгебра

Изучение фракталов на рубеже XIX и XX веков носило скорее эпизодический, нежели систематический характер, потому что раньше математики в основном изучали «хорошие» объекты, которые поддавались исследованию при помощи общих методов и теорий. В 1872 году немецкий математик Карл Вейерштрасс строит пример непрерывной функции, которая нигде не дифференцируема. Однако его построение было целиком абстрактно и трудно для восприятия. Поэтому в 1904 году швед Хельге фон Кох придумал непрерывную кривую, которая нигде не имеет касательной, причем ее довольно просто нарисовать. Оказалось, что она обладает свойствами фрактала. Один из вариантов этой кривой носит название «снежинка Коха».

Идеи самоподобия фигур подхватил француз Поль Пьер Леви, будущий наставник Бенуа Мандельброта. В 1938 году вышла его статья «Плоские и пространственные кривые и поверхности, состоящие из частей, подобных целому», в которой описан еще один фрактал — С-кривая Леви. Все эти вышеперечисленные фракталы можно условно отнести к одному классу конструктивных (геометрических) фракталов.


Другой класс — динамические (алгебраические) фракталы, к которым относится и множество Мандельброта. Первые исследования в этом направлении начались в начале XX века и связаны с именами французских математиков Гастона Жулиа и Пьера Фату. В 1918 году вышел почти двухсотстраничный мемуар Жулиа, посвященный итерациям комплексных рациональных функций, в котором описаны множества Жулиа — целое семейство фракталов, близко связанных с множеством Мандельброта. Этот труд был удостоен приза Французской академии, однако в нем не содержалось ни одной иллюстрации, так что оценить красоту открытых объектов было невозможно. Несмотря на то что это работа прославила Жулиа среди математиков того времени, о ней довольно быстро забыли. Вновь внимание к ней обратилось лишь полвека спустя с появлением компьютеров: именно они сделали видимыми богатство и красоту мира фракталов.

Фрактальные размерности

Как известно, размерность (число измерений) геометрической фигуры — это число координат, необходимых для определения положения лежащей на этой фигуре точки.
Например, положение точки на кривой определяется одной координатой, на поверхности (не обязательно плоскости) двумя координатами, в трёхмерном пространстве тремя координатами.
С более общей математической точки зрения, можно определить размерность таким образом: увеличение линейных размеров, скажем, в два раза, для одномерных (с топологической точки зрения) объектов (отрезок) приводит к увеличению размера (длины) в два раза, для двумерных (квадрат) такое же увеличение линейных размеров приводит к увеличению размера (площади) в 4 раза, для трехмерных (куб) — в 8 раз. То есть «реальную» (т.н. Хаусдорфову) размерность можно подсчитать в виде отношения логарифма увеличения «размера» объекта к логарифму увеличения его линейного размера. То есть для отрезка D=log (2)/log (2)=1, для плоскости D=log (4)/log (2)=2, для объема D=log (8)/log (2)=3.
Подсчитаем теперь размерность кривой Коха, для построения которой единичный отрезок делят на три равные части и заменяют средний интервал равносторонним треугольником без этого сегмента. При увеличении линейных размеров минимального отрезка в три раза длина кривой Коха возрастает в log (4)/log (3)~1,26. То есть размерность кривой Коха — дробная!

Наука и искусство

В 1982 году вышла книга Мандельброта «Фрактальная геометрия природы», в которой автор собрал и систематизировал практически всю имевшуюся на тот момент информацию о фракталах и в легкой и доступной манере изложил ее. Основной упор в своем изложении Мандельброт сделал не на тяжеловесные формулы и математические конструкции, а на геометрическую интуицию читателей. Благодаря иллюстрациям, полученным при помощи компьютера, и историческим байкам, которыми автор умело разбавил научную составляющую монографии, книга стала бестселлером, а фракталы стали известны широкой публике. Их успех среди нематематиков во многом обусловлен тем, что с помощью весьма простых конструкций и формул, которые способен понять и старшеклассник, получаются удивительные по сложности и красоте изображения. Когда персональные компьютеры стали достаточно мощными, появилось даже целое направление в искусстве — фрактальная живопись, причем заниматься ею мог практически любой владелец компьютера. Сейчас в интернете можно легко найти множество сайтов, посвященных этой теме.


Схема получения кривой Коха

Война и мир

Как уже отмечалось выше, один из природных объектов, имеющих фрактальные свойства, — это береговая линия. С ним, а точнее, с попыткой измерить его длину, связана одна интересная история, которая легла в основу научной статьи Мандельброта, а также описана в его книге «Фрактальная геометрия природы». Речь идет об эксперименте, который поставил Льюис Ричардсон — весьма талантливый и эксцентричный математик, физик и метеоролог. Одним из направлений его исследований была попытка найти математическое описание причин и вероятности возникновения вооруженного конфликта между двумя странами. В числе параметров, которые он учитывал, была протяженность общей границы двух враждующих стран. Когда он собирал данные для численных экспериментов, то обнаружил, что в разных источниках данные об общей границе Испании и Португалии сильно отличаются. Это натолкнуло его на следующее открытие: длина границ страны зависит от линейки, которой мы их измеряем. Чем меньше масштаб, тем длиннее получается граница. Это происходит из-за того, что при большем увеличении становится возможным учитывать все новые и новые изгибы берега, которые раньше игнорировались из-за грубости измерений. И если при каждом увеличении масштаба будут открываться ранее не учтенные изгибы линий, то получится, что длина границ бесконечна! Правда, на самом деле этого не происходит — у точности наших измерений есть конечный предел. Этот парадокс называется эффектом Ричардсона.


Конструктивные (геометрические) фракталы

Алгоритм построения конструктивного фрактала в общем случае таков. Прежде всего нам нужны две подходящие геометрические фигуры, назовем их основой и фрагментом. На первом этапе изображается основа будущего фрактала. Затем некоторые ее части заменяются фрагментом, взятым в подходящем масштабе, — это первая итерация построения. Затем у полученной фигуры снова некоторые части меняются на фигуры, подобные фрагменту, и т. д. Если продолжить этот процесс до бесконечности, то в пределе получится фрактал.

Рассмотрим этот процесс на примере кривой Коха (см. врезку на предыдущей странице). За основу кривой Коха можно взять любую кривую (для «снежинки Коха» это треугольник). Но мы ограничимся простейшим случаем — отрезком. Фрагмент — ломаная, изображенная сверху на рисунке. После первой итерации алгоритма в данном случае исходный отрезок совпадет с фрагментом, затем каждый из составляющих его отрезков сам заменится на ломаную, подобную фрагменту, и т. д. На рисунке показаны первые четыре шага этого процесса.


Языком математики: динамические (алгебраические) фракталы

Фракталы этого типа возникают при исследовании нелинейных динамических систем (отсюда и название). Поведение такой системы можно описать комплексной нелинейной функцией (многочленом) f (z). Возьмем какую-нибудь начальную точку z0 на комплексной плоскости (см. врезку). Теперь рассмотрим такую бесконечную последовательность чисел на комплексной плоскости, каждое следующее из которых получается из предыдущего: z0, z1=f (z0), z2=f (z1), … zn+1=f (zn). В зависимости от начальной точки z0 такая последовательность может вести себя по‑разному: стремиться к бесконечности при n -> ∞; сходиться к какой-то конечной точке; циклически принимать ряд фиксированных значений; возможны и более сложные варианты.

Комплексные числа

Комплексное число — это число, состоящее из двух частей — действительной и мнимой, то есть формальная сумма x + iy (x и y здесь — вещественные числа). i — это т.н. мнимая единица, то есть то есть число, удовлетворяющее уравнению i^ 2 = -1. Над комплексными числами определены основные математические операции — сложение, умножение, деление, вычитание (не определена только операция сравнения). Для отображения комплексных чисел часто используется геометрическое представление — на плоскости (ее называют комплексной) по оси абсцисс откладывают действительную часть, а по оси ординат — мнимую, при этом комплексному числу будет соответствовать точка с декартовыми координатами x и y.

Таким образом, любая точка z комплексной плоскости имеет свой характер поведения при итерациях функции f (z), а вся плоскость делится на части. При этом точки, лежащие на границах этих частей, обладают таким свойством: при сколь угодно малом смещении характер их поведения резко меняется (такие точки называют точками бифуркации). Так вот, оказывается, что множества точек, имеющих один конкретный тип поведения, а также множества бифуркационных точек часто имеют фрактальные свойства. Это и есть множества Жулиа для функции f (z).

Семейство драконов

Варьируя основу и фрагмент, можно получить потрясающее разнообразие конструктивных фракталов.
Более того, подобные операции можно производить и в трехмерном пространстве. Примерами объемных фракталов могут служить «губка Менгера», «пирамида Серпинского» и другие.
К конструктивным фракталам относят и семейство драконов. Иногда их называют по имени первооткрывателей «драконами Хейвея-Хартера» (своей формой они напоминают китайских драконов). Существует несколько способов построения этой кривой. Самый простой и наглядный из них такой: нужно взять достаточно длинную полоску бумаги (чем тоньше бумага, тем лучше), и согнуть ее пополам. Затем снова согнуть ее вдвое в том же направлении, что и в первый раз. После нескольких повторений (обычно через пять-шесть складываний полоска становится слишком толстой, чтобы ее можно было аккуратно гнуть дальше) нужно разогнуть полоску обратно, причем стараться, чтобы в местах сгибов образовались углы в 90˚. Тогда в профиль получится кривая дракона. Разумеется, это будет лишь приближение, как и все наши попытки изобразить фрактальные объекты. Компьютер позволяет изобразить гораздо больше шагов этого процесса, и в результате получается очень красивая фигура.

Множество Мандельброта строится несколько иначе. Рассмотрим функцию fc (z) = z 2 +с, где c — комплексное число. Построим последовательность этой функции с z0=0, в зависимости от параметра с она может расходиться к бесконечности или оставаться ограниченной. При этом все значения с, при которых эта последовательность ограничена, как раз и образуют множество Мандельброта. Оно было детально изучено самим Мандельбротом и другими математиками, которые открыли немало интересных свойств этого множества.

Видно, что определения множеств Жулиа и Мандельброта похожи друг на друга. На самом деле эти два множества тесно связаны. А именно, множество Мандельброта — это все значения комплексного параметра c, при которых множество Жулиа fc (z) связно (множество называется связным, если его нельзя разбить на две непересекающиеся части, с некоторыми дополнительными условиями).


Фракталы и жизнь

В наши дни теория фракталов находит широкое применение в различных областях человеческой деятельности. Помимо чисто научного объекта для исследований и уже упоминавшейся фрактальной живописи, фракталы используются в теории информации для сжатия графических данных (здесь в основном применяется свойство самоподобия фракталов — ведь чтобы запомнить небольшой фрагмент рисунка и преобразования, с помощью которых можно получить остальные части, требуется гораздо меньше памяти, чем для хранения всего файла). Добавляя в формулы, задающие фрактал, случайные возмущения, можно получить стохастические фракталы, которые весьма правдоподобно передают некоторые реальные объекты — элементы рельефа, поверхность водоемов, некоторые растения, что с успехом применяется в физике, географии и компьютерной графике для достижения большего сходства моделируемых предметов с настоящими. В радиоэлектронике в последнее десятилетие начали выпускать антенны, имеющие фрактальную форму. Занимая мало места, они обеспечивают вполне качественный прием сигнала. Экономисты используют фракталы для описания кривых колебания курсов валют (это свойство было открыто Мандельбротом более 30 лет назад). На этом мы завершим эту небольшую экскурсию в удивительный по красоте и разнообразию мир фракталов.

Пример фрактала

«Фрактал» был введен в обиход математиками менее полувека назад, вскоре стал, наряду с синергетикой и аттрактором, одним из «трех китов» молодой Теории Детерминированного Хаоса, и сегодня уже признан, как один из основополагающих элементов устройства мироздания.

С латыни слово fractus переводится как «сломанный», современные латинские языки придали ему значение «рваный». Фрактал — это нечто, что идентично целому/большему, частью чего является, и, одновременно, копирует каждую собственную составную часть. Таким образом, «фрактальность» — это бесконечное подобие «всего» на свои составляющие, то есть, это самоподобие на любом уровне. Каждый уровень фрактальной ветки называется «итерация», чем больше развита описанная или графически изображенная система, тем больше фрактальных итераций видит наблюдатель. При этом точка, в которой происходит разделение (например, ствола на ветки, реки на два потока и т.д.), называют точкой бифуркации.

Термин fractus был выбран математиком Бенуа Мандельбротом в 1975 году для описания научного открытия и стал популярным несколькими годами позже – после того как он развил тему для широкой аудитории в своей книге «Фрактальная геометрия природы».

Сегодня фрактал широко знаменит как фантастические узоры так называемого «фрактального искусства», созданные компьютерными программами. Но с помощью компьютера можно генерировать не только красивые абстрактные картинки, но и весьма правдоподобные природные пейзажи – горы, реки, леса. Тут, собственно, находится точка перехода науки в реальную жизнь, или наоборот, если предположить, что их вообще возможно разделять.

Дело в том, что принцип фрактальности подходит не только для описания открытий в точных науках. Это, в первую очередь, принцип устройства и развития самой природы. Все вокруг нас – фракталы! Самая очевидная группа примеров — реки с притоками, венозная система с капиллярами, молния, морозные узоры, деревья… Совсем недавно ученые, проверяя теорию фрактальности , экспериментально убедились даже в том, что по схеме одного дерева можно делать выводы о лесном массиве, где эти деревья растут. Другие примеры фрактальных групп: атом – молекула — планетарная системасолнечная система – галактики — вселенная… Минута – час – день – неделя – месяц – год — век… Даже сообщество людей самоустраивается по принципам фрактальности: я – семья – род – народность – национальности — рассы… Индивидум – группа – партия — государство. Работник – отдел – департамент – предприятие — концерн… Даже божественные пантеоны разных религий построены по тому же принципу, включая христианство: Бог-Отец – Троица – святые – церковь – верующие, не говоря об организации божественных пантеонов языческих религий.

История заявляет, что впервые самоподобные множества были замечены в 19 веке в трудах ученых — Пуанкаре, Фату, Жюлиа, Кантора, Хаусдорфа, но истина в том, что уже языческие славяне оставили нам доказательство того, что люди понимали индивидуальное бытие, как малую деталь в бесконечности мироздания. Это – изученный искусствоведами Беларуси и Украины объект народной культуры, называемый «паук». Он является своеобразным прототипом скульптуры современного стиля «mobile» (части находятся в постоянном движении относительно друг друга). «Паук» чаще соломенный, состоит из одинаковых по форме маленьких, средних, больших элементов, подвешенных друг к другу так, что каждая меньшая часть точно повторяет в структуре большую и всю конструкцию в целом. Эту конструкцию вешали в главном углу жилья, как бы обозначая свой дом, как элемент всего мира.

Теория фрактальности сегодня работает везде, в том числе в философии, которая говорит, что в течение каждой жизни, а любая и вся жизнь в целом фрактальна, случаются «точки бифуркации», когда на более высокие уровни развитие может пойти разными путями и момент, когда человек «оказывается перед выбором», является самой настоящей «точкой буфуркации» во фракталах его жизни.

Теория Детерминированного Хаоса говорит, что развитие каждого фрактала не бесконечно. Ученые полагают, что в определенный момент наступает предел, за которым рост итераций прекращается и фрактал начинает «сужаться», доходя постепенно до своей изначальной единичной меры, а затем процесс снова идет по кругу — аналогично вдохам и выдохам, сменам утра и ночи, зимы и лета в природе.


Для чтобы представить все многообразие фракталов удобно прибегнуть к их общепринятой классификации .

2.1 Геометрические фракталы

Фракталы этого класса самые наглядные. В двухмерном случае их получают с помощью некоторой ломаной (или поверхности в трехмерном случае), называемой генератором . За один шаг алгоритма каждый из отрезков, составляющих ломаную, заменяется на ломаную-генератор, в соответствующем масштабе. В результате бесконечного повторения этой процедуры, получается геометрический фрактал.

Рис 1. Построение триадной кривой Кох.

Рассмотрим один из таких фрактальных объектов - триадную кривую Кох . Построение кривой начинается с отрезка единичной длины (рис.1) - это 0-е поколение кривой Кох. Далее каждое звено (в нулевом поколении один отрезок) заменяется на образующий элемент , обозначенный на рис.1 через n=1 . В результате такой замены получается следующее поколение кривой Кох. В 1-ом поколении - это кривая из четырех прямолинейных звеньев, каждое длиной по 1/3 . Для получения 3-го поколения проделываются те же действия - каждое звено заменяется на уменьшенный образующий элемент. Итак, для получения каждого последующего поколения, все звенья предыдущего поколения необходимо заменить уменьшенным образующим элементом. Кривая n -го поколения при любом конечном n называется предфракталом . На рис.1 представлены пять поколений кривой. При n стремящемся к бесконечности кривая Кох становится фрактальным обьектом .


Рис 2. Построение "дракона" Хартера-Хейтуэя.

Для получения другого фрактального объекта нужно изменить правила построения. Пусть образующим элементом будут два равных отрезка, соединенных под прямым углом. В нулевом поколении заменим единичный отрезок на этот образующий элемент так, чтобы угол был сверху. Можно сказать, что при такой замене происходит смещение середины звена. При построении следующих поколений выполняется правило: самое первое слева звено заменяется на образующий элемент так, чтобы середина звена смещалась влево от направления движения, а при замене следующих звеньев, направления смещения середин отрезков должны чередоваться. На рис.2 представлены несколько первых поколений и 11-е поколение кривой, построенной по вышеописанному принципу. Предельная фрактальная кривая (при n стремящемся к бесконечности) называется драконом Хартера-Хейтуэя .

В машинной графике использование геометрических фракталов необходимо при получении изображений деревьев, кустов, береговой линии. Двухмерные геометрические фракталы используются для создания объемных текстур (рисунка на поверхности обьекта) .

2.2 Алгебраические фракталы

Это самая крупная группа фракталов. Получают их с помощью нелинейных процессов в n -мерных пространствах. Наиболее изучены двухмерные процессы. Интерпретируя нелинейный итерационный процесс, как дискретную динамическую систему, можно пользоватся терминологией теории этих систем: фазовый портрет , установившийся процесс , аттрактор и т.д.

Известно, что нелинейные динамические системы обладают несолькими устойчивыми состояниями. То состояние, в котором оказалась динамическая система после некоторого числа итераций, зависит от ее начального состояния. Поэтому каждое устойчивое состояние (или как говорят - аттрактор) обладает некоторой областью начальных состояний, из которых система обязательно попадет в рассматриваемые конечные состояния. Таким образом фазовое пространство системы разбивается на области притяжения аттракторов. Если фазовым является двухмерное пространство, то окрашивая области притяжения различными цветами, можно получить цветовой фазовый портрет этой системы (итерационного процесса). Меняя алгоритм выбора цвета, можно получить сложные фрактальные картины с причудливыми многоцветными узорами. Неожиданностью для математиков стала возможность с помощью примитивных алгоритмов порождать очень сложные нетривиальные структуры.


Рис 3. Множество Мандельброта.

В качестве примера рассмотрим множество Мандельброта (см. pис.3 и рис.4). Алгоритм его построения достаточно прост и основан на простом итеративном выражении:

Z = Z [i] * Z [i] + C ,

где Z i и C - комплексные переменные. Итерации выполняются для каждой стартовой точки C прямоугольной или квадратной области - подмножестве комплексной плоскости. Итерационный процесс продолжается до тех пор, пока Z [i] не выйдет за пределы окружности радиуса 2, центр которой лежит в точке (0,0), (это означает, что аттрактор динамической системы находится в бесконечности), или после достаточно большого числа итераций (например 200-500) Z [i] сойдется к какой-нибудь точке окружности. В зависимости от количества итераций, в течении которых Z [i] оставалась внутри окружности, можно установить цвет точки C (если Z [i] остается внутри окружности в течение достаточно большого количества итераций, итерационный процесс прекращается и эта точка растра окрашивается в черный цвет).


Рис 4. Участок границы множества Мандельброта, увеличенный в 200 pаз.

Вышеописанный алгоритм дает приближение к так называемому множеству Мандельброта. Множеству Мандельброта принадлежат точки, которые в течение бесконечного числа итераций не уходят в бесконечность (точки имеющие черный цвет). Точки принадлежащие границе множества (именно там возникает сложные структуры) уходят в бесконечность за конечное число итераций, а точки лежащие за пределами множества, уходят в бесконечность через несколько итераций (белый фон).

2.3 Стохастические фракталы

Еще одним известным классом фракталов являются стохастические фракталы, которые получаются в том случае, если в итерационном процессе случайным образом менять какие-либо его параметры. При этом получаются объекты очень похожие на природные - несимметричные деревья, изрезанные береговые линии и т.д. Двумерные стохастические фракталы используются при моделировании рельефа местности и поверхности моря .

Существуют и другие классификации фракталов, например деление фракталов на детерминированные (алгебраические и геометрические) и недетерминированные (стохастические).



Беременность и роды